Kontaktai

Kvantinis įsipainiojimas ir kirmgraužos gali būti glaudžiai susiję. Kvantinis susipainiojimas paprastais žodžiais. Stebuklai tęsia kvantinę priklausomybę

Jau seniai perduodame signalus įvairiomis laikmenomis. Naudojome signalinius laužus, būgnus, balandžius, elektrą. Ir galiausiai jie vėl išėjo į šviesą – į informacijos perdavimą per optiką. Dabar mes tiriame įsipainiojusius fotonus. Visi žinome, kad raktas gali būti perduodamas tiesiogiai per kvantinį susipynimą, bet ne kita informacija. O jei ne tiesiogiai, o su pagalba? Kas domisi, kviečiame į katę.

Kvantinis susipynimas

Pirmiausia pabandysiu paaiškinti kvantinio susipynimo poveikį:

Yra pora kojinių. Kiekviena kojinė iš poros, iškart po sukibimo momento, dedama į atskirą dėžutę ir siunčiama jos gavėjui. Kai vienas iš gavėjų atidaro pakuotę, pamato dešinę (arba kairę) kojinę ir iš karto gauna informaciją apie tai, kokias kojines turi antrasis gavėjas, kad ir kaip toli jis būtų. Be to, iš anksto tiksliai nuspėti, ar kojinė bus dešinė ar kairė, neįmanoma. O svarbiausia yra tai, kuo kvantinė fizika taip skiriasi nuo klasikinės fizikos: kol kojinės neatplėštos, jie patys „nežino“, kuri dešinė, kuri kairė. Bet kai tik viena iš kojinių buvo pastebėta ir „pasiryžta“, antroji tą pačią akimirką įgijo griežtai priešingą savybę. Daugiau informacijos su įrodymais galite rasti paieškoje „Varpo teorema“.

Kaip matome, tiesiogiai per šią nuosavybę prasmingos informacijos perduoti neįmanoma. Tačiau yra išeitis.

Informacijos nešiklio ir signalo perdavimo principas

Taigi kvantinio ryšio palydovas QUESS sugebėjo perduoti įsipainiojusius fotonus tarp porų observatorijų, esančių iki 1203 kilometrų atstumu. Mokslininkai patvirtino santykį: vienas sėkmingas perdavimo įvykis šešiems milijonams išsiųstų fotonų porų. Atrodytų, signalo ir triukšmo santykis nesukelia optimizmo, tačiau pats sėkmingo perdavimo faktas paverčia darbą su tokiu informacijos nešikliu iš neįmanomo į inžinerinę užduotį – kovoti su pertekliumi ir triukšmu.

Tikimės, kad laikui bėgant sugalvosime daug būdų, kaip panaudoti kvantinį susipynimą. Aprašysiu vieną iš, mano nuomone, galimų.

Pirmasis etapas: įrenginys atskiria susipynusias poras ir nuoseklia grandine perduoda įsipainiojusius fotonus į bokštus „A“ (būsimas sąlyginis siųstuvas) ir „B“ (būsimas sąlyginis imtuvas) saugoti. Saugojimo laikmena buvo perkelta.

Antrasis etapas: bokštas „A“ atlieka pirmojo grandinės fotono matavimą (stebėjimą), nustatydamas pranešimo perdavimo pradžios momentą, paleidžia laikmatį „T“, kurio metu išmatuoja tuos grandinės fotonus, kurie bus įprastiniais vienetais ir neturi įtakos tiems fotonams, kurie bus sąlyginis nulis; per silpną matavimą bokšto „B“ įranga nustato pirmojo fotono būsenos pokytį ir paleidžia laikmatį „T“.

Trečias etapas: pasibaigus nurodytam laikui „T“, bokšto „B“ įranga per silpną sąveiką fiksuoja fotonų būseną grandinėje, kur įsipainioję fotonai yra 1, o likę įsipainioję – 0.

Taip pat, pavyzdžiui, grandinės stebėjimo pradžios ir pabaigos trigeris gali būti iš anksto sinchronizuotas laikmatis.

Taigi mums neįdomu, kas tiksliai yra poroje esantis fotonas. Mus domina pats faktas: išsaugoma sanglauda, ​​ar ne. Signalas buvo perduotas.

Tai koncepcija iš idealaus pasaulio, kuriame nebuvo prarastas nei vienas fotonas, teisingai surinkta grandinė ir pan. Realaus pasaulio iššūkiai yra susiję su pertekliumi ir triukšmu, taip pat su sunkumais kuriant dalelių saugojimo, poveikio ir valdymo sistemas.
Tačiau svarbiausia yra pagrindinė signalo perdavimo galimybė per kvantinį susipynimą.

Ryšys tarp laikmenos ir signalo

Pati šio darbo su signalu metodo galimybė leidžia pažvelgti į informaciją nauju kampu. Pasirodo, informacijos nešiklio (susijungusių dalelių grandinės) perdavimo momentu, esamų dėsnių rėmuose, ne greičiau nei šviesos greitis, perduodame visą įmanomą informaciją, kurią tik tokiu būdu galima užkoduoti.

Pateiksiu analogiją: užsisakei knygą iš bibliotekos, sutinki kurjerį, o už jo, tau nematomos, yra visos bibliotekos knygos, nesvarbu, žinai apie jas ar ne. Jūs įvardijate autorių ir pavadinimą, paimate vieną knygą, o likusios iš karto sunaikinamos.
Iki kito kurjerio iš bibliotekos.

Dar viena analogija: parašau žodį „pynė“ ir jūsų smegenyse atsiranda vaizdai, kuriuos gali inicijuoti šis informacijos nešėjas. Tačiau norint perduoti signalą, reikalinga specifikacija: „šviesiai ruda“ arba „medinė“ arba „smėlėta“. Kitomis kalbomis šis Xhosa simbolių derinys gali reikšti ką kita, o informacija yra terpėje, nesvarbu, ar mes ją žinome, ar ne. Mes tiesiog neturime norimam signalui patikslinti trigerio ir atminties.

Tas pats ir su dalelių grandine: perdavimo į bokštus momentu mes perdavėme visą įmanomą informaciją (galimus variantus), likdami žinomos fizikos rėmuose, ne greičiau nei šviesos greitis ir matavimo faktu. mes tik patikslinome.

Apskritai, mūsų laukia įdomus laikas, bandant paaiškinti (ir suprasti), kad sąlyginis šnipas, ant objekto nutempęs porą įsipainiojusių dalelių ir tam tikru metu paspaudęs mygtuką (arba nepaspaudęs, palikęs daleles įsipainiojusias) neperdavė informacijos per porines daleles „būstinėje“ greičiau nei šviesos greitis. Jis nešė savo informaciją kaip sraigė ant kupros. O su mygtuku tik patikslinau, išsirinkau, patikslinau. Dar turime išsiaiškinti, ką jis padarė. Bet kariškiams tai patiks. Man patiks minos, kurių negalima apsaugoti nuo komandos ir be valdymo laidų. Man patiks galimybė bet kokiu atstumu, per bet kokius trukdžius, duoti užsakymą imtuvui su dalelių konteineriu, kurį iš anksto pasiėmiau. Manau, kad jie bus tie, kurie vėl pastūmės technologijas į priekį.

Arba chirurgas, kuriam bokštai visame pasaulyje visą naktį kaupė laikmenas (susipainiojusias daleles) skirtinguose planetos galuose, gerbdamas šviesos greitį, atliks operaciją ir pamatys momentines chirurginio roboto reakcijas. tūkstančius kilometrų nuo jo biuro. Vėliau interviu jis sakys, kad viskas įvyko akimirksniu. O tai skaitantis fizikas niurzgės, kad visa informacija apie visus galimus chirurgo veiksmus buvo perduodama naktį (fizikos požiūriu), normaliu greičiu. O chirurgas tik savo veiksmais „išaiškino“, kaip tiksliai jis operavo.

Arba informacijos sąveika ir, pavyzdžiui, pasaulio lokalinės savybės. Ši savybė reiškia, kad įvykis viename, tarkime, planetos taške, negali akimirksniu paveikti fizinės tikrovės kitame planetos taške. Tada, jei sąlyginis mygtuko paspaudimas per kvantinio susipynimo efektą akimirksniu užsidega lemputė kitoje planetos pusėje, tada informacija apie įtakojantį įvykį buvo įrašyta į laikmeną prieš įvykstant įtakojančiam įvykiui.

Pasirodo, mes esame ant kito signalo evoliucijos žingsnio slenksčio. Naudodami kvantinį pasaulį išskiriame signalo perdavimo greitį ir informacijos nešėjo sklidimo greitį. Užtikrindami susietų porų tiekimą normaliu greičiu, tuo metu, kai labai svarbu signalą perduoti beveik akimirksniu, galime, nors teoriškai, kol kas tai įgyvendinti.

Kvantinis įsipainiojimas, prieštaringiausias kvantinės mechanikos reiškinys, kurį Albertas Einšteinas pavadino „baisu veiksmu per atstumą“, gali būti dar labiau „supainiotas“, nei teigia dabartinės teorijos. Vašingtono ir Niujorko universitetų fizikai mano, kad šis reiškinys yra susijęs su kirmgraužomis – hipotetinėmis erdvėlaikio ypatybėmis, kurios, remiantis šiuolaikine moksline fantastika, gali užtikrinti greitą perėjimą iš vienos Visatos dalies į kitą.

Kvantinis susipynimas yra reiškinys, kai daugelio kūnų sistemos kvantinės būsenos tampa tarpusavyje susijusios. Šis ryšys išsaugomas net tada, kai objektai yra atskirti tokiais atstumais, kad tarp jų neatsiranda jokios žinomos sąveikos. Be to, fizinėje sąvokoje yra trumpojo ir ilgo nuotolio sąvokos. Pagal trumpojo nuotolio teoriją, sąveika tarp kūnų perduodama naudojant kokią nors trečiąją grandį ir baigtinę greičio reikšmę. Pavyzdžiui, elektromagnetinė sąveika naudojant elektromagnetinį lauką. Remiantis tolimojo veikimo teorija, sąveika tarp objektų perduodama be papildomo elemento, per tuštumą ir į bet kokį atstumą. Šiuo atveju sąveika vyksta be galo dideliu greičiu. Kaip pavyzdį galime pateikti universaliosios gravitacijos jėgą iš Niutono gravitacijos teorijos.

Dėl kvantinio susipynimo dalelių grupė sąveikauja taip, kad diktuoja vienos dalelės elgesį, palyginti su kitų elgesiu. Pavyzdžiui, įsipainiojusių dalelių poroje, jei pastebima, kad viena dalelė turi tam tikrą sukimąsi, tada kitos dalelės sukimasis bus priešingas. Einšteinas šią sąveiką pavadino vaiduokliška būtent todėl, kad įsipainiojimas išlieka, nesvarbu, kaip toli vienas nuo kito yra dalelės. Jei pasikeičia vienos dalelės elgsena, tai tuo pačiu keičiasi ir su ja susijusios dalelės elgsena.

Kirmgrauža tarp dviejų juodųjų skylių. Šaltinis: Alanas Stonebrakeris/American Physical Society

Naujausi tyrimai parodė, kad vadinamųjų kirmgraužų ypatybės yra tokios pačios, jei dvi juodosios skylės iš pradžių susipainioja, o paskui skiria tam tikru atstumu. Net jei juodosios skylės būtų priešinguose visatos galuose, kirmgrauža galėtų jas sujungti. Bet nesvarbu, ar juodosios skylės yra net tokio dydžio kaip atomas, ar didesnės už mūsų Saulę (kuri stebima visoje Visatoje), jų gravitacija yra tokia stipri, kad net šviesa negali ištrūkti iš gravitacinio gniaužto. Jei dvi juodosios skylės būtų įsipainiojusios, žmogus, esantis už pirmosios juodosios skylės įvykių horizonto, vis tiek negalėtų žinoti, kas vyksta už antrosios juodosios skylės įvykių horizonto. Kad galėtų bendrauti su žmogumi kitame gale, abu turėtų patekti į savo juodąsias skyles. Tada aplinkinė erdvė bus tokia pati.

Skaisčiai spindėjo auksinė rudeninė medžių lapija. Vakaro saulės spinduliai palietė suplonėjusias viršūnes. Šviesa prasiskverbė pro šakas ir sukūrė keistų figūrų reginį, mirgantį ant universiteto „kemperio“ sienos.

Sero Hamiltono mąslus žvilgsnis lėtai nuslydo, stebėdamas chiaroscuro žaidimą. Airijos matematiko galvoje virė tikras minčių, idėjų ir išvadų katilas. Jis puikiai suprato, kad daugelio reiškinių paaiškinimas naudojant Niutono mechaniką yra tarsi šešėlių žaismas ant sienos, apgaulingai supinantis figūras ir paliekantis daug neatsakytų klausimų. „Galbūt tai banga... o gal dalelių srautas, – svarstė mokslininkas, – arba šviesa yra abiejų reiškinių apraiška. Kaip figūros, nupintos iš šešėlio ir šviesos.

Kvantinės fizikos pradžia

Įdomu stebėti puikius žmones ir bandyti suprasti, kaip gimsta puikios idėjos, keičiančios visos žmonijos evoliucijos eigą. Hamiltonas yra vienas iš tų, kurie stovėjo prie kvantinės fizikos ištakų. Po penkiasdešimties metų, XX amžiaus pradžioje, daugelis mokslininkų tyrinėjo elementarias daleles. Gautos žinios buvo prieštaringos ir nesudėtos. Tačiau pirmieji drebantys žingsniai buvo žengti.

Mikropasaulio supratimas XX amžiaus pradžioje

1901 m. buvo pristatytas pirmasis atomo modelis ir jo nenuoseklumas parodytas iš įprastinės elektrodinamikos pozicijų. Per tą patį laikotarpį Maxas Planckas ir Nielsas Bohras paskelbė daug darbų apie atomo prigimtį. Nepaisant jų visiško supratimo apie atomo struktūrą, nebuvo.

Po kelerių metų, 1905 m., mažai žinomas vokiečių mokslininkas Albertas Einšteinas paskelbė pranešimą apie šviesos kvanto egzistavimą dviejose būsenose – banginėje ir korpuskulinėje (dalelėse). Jo darbe buvo pateikti argumentai, paaiškinantys modelio gedimo priežastį. Tačiau Einšteino viziją ribojo senas atominio modelio supratimas.

Po daugybės Nielso Bohro ir jo kolegų darbų 1925 metais gimė nauja kryptis – savotiška kvantinė mechanika. Bendras posakis „kvantinė mechanika“ atsirado po trisdešimties metų.

Ką mes žinome apie kvantus ir jų keistenybes?

Šiandien kvantinė fizika pažengė gana toli. Buvo atrasta daug įvairių reiškinių. Bet ką mes iš tikrųjų žinome? Atsakymą pateikia vienas šiuolaikinis mokslininkas. „Galite arba tikėti kvantine fizika, arba jos nesuprasti“, – toks apibrėžimas. Pagalvokite apie tai patys. Užteks paminėti tokį reiškinį kaip kvantinis dalelių susipynimas. Šis reiškinys panardino mokslo pasaulį į visišką sumišimo būseną. Dar didesnis šokas buvo tai, kad iškilęs paradoksas buvo nesuderinamas su Einšteinu.

Kvantinio fotonų susipynimo poveikis pirmą kartą buvo aptartas 1927 m. Penktajame Solvay kongrese. Tarp Nielso Bohro ir Einšteino kilo karštas ginčas. Kvantinio susipynimo paradoksas visiškai pakeitė supratimą apie materialaus pasaulio esmę.

Yra žinoma, kad visi kūnai susideda iš elementariųjų dalelių. Atitinkamai, visi kvantinės mechanikos reiškiniai atsispindi įprastame pasaulyje. Nielsas Bohras sakė, kad jei nežiūrime į Mėnulį, vadinasi, jo nėra. Einšteinas laikė tai neprotinga ir manė, kad objektas egzistuoja nepriklausomai nuo stebėtojo.

Tiriant kvantinės mechanikos problemas, reikėtų suprasti, kad jos mechanizmai ir dėsniai yra tarpusavyje susiję ir nepaklūsta klasikinei fizikai. Pabandykime suprasti kontroversiškiausią sritį – kvantinį dalelių susipynimą.

Kvantinio susipynimo teorija

Pirmiausia verta suprasti, kad kvantinė fizika yra tarsi bedugnis šulinys, kuriame galite rasti bet ką. Kvantinio susipynimo fenomeną praėjusio amžiaus pradžioje tyrė Einšteinas, Boras, Maksvelas, Boyle'as, Bellas, Plankas ir daugelis kitų fizikų. Per dvidešimtąjį amžių tūkstančiai mokslininkų visame pasaulyje aktyviai tai tyrinėjo ir eksperimentavo.

Pasauliui galioja griežti fizikos dėsniai

Kodėl toks susidomėjimas kvantinės mechanikos paradoksais? Viskas labai paprasta: gyvename pagal tam tikrus fizinio pasaulio dėsnius. Gebėjimas „apeiti“ predestinaciją atveria magiškas duris, už kurių viskas tampa įmanoma. Pavyzdžiui, „Šrodingerio katės“ sąvoka veda į materijos valdymą. Taip pat bus įmanoma teleportuoti informaciją, kurią sukelia kvantinis susipynimas. Informacijos perdavimas taps akimirksniu, nepaisant atstumo.
Šis klausimas vis dar tiriamas, tačiau turi teigiamą tendenciją.

Analogija ir supratimas

Kuo unikalus kvantinis susipynimas, kaip jį suprasti ir kas atsitinka, kai tai įvyksta? Pabandykime tai išsiaiškinti. Norėdami tai padaryti, turėsite atlikti tam tikrą minties eksperimentą. Įsivaizduokite, kad jūsų rankose yra dvi dėžutės. Kiekviename iš jų yra vienas rutulys su juostele. Dabar mes duodame vieną dėžę astronautui, ir jis išskrenda į Marsą. Kai atidarote dėžutę ir pamatysite, kad rutulio juostelė yra horizontali, kitoje dėžutėje esantis rutulys automatiškai turės vertikalią juostelę. Tai bus kvantinis susipynimas, išreikštas paprastais žodžiais: vienas objektas iš anksto nustato kito padėtį.

Tačiau reikia suprasti, kad tai tik paviršutiniškas paaiškinimas. Norint gauti kvantinį susipynimą, dalelės turi būti tos pačios kilmės, kaip ir dvyniai.

Labai svarbu suprasti, kad eksperimentas bus sutrikdytas, jei kas nors prieš jus turėjo galimybę apžiūrėti bent vieną iš objektų.

Kur galima panaudoti kvantinį susipynimą?

Kvantinio susipynimo principas gali būti naudojamas norint akimirksniu perduoti informaciją dideliais atstumais. Tokia išvada prieštarauja Einšteino reliatyvumo teorijai. Sakoma, kad didžiausias judėjimo greitis būdingas tik šviesai – trys šimtai tūkstančių kilometrų per sekundę. Toks informacijos perdavimas leidžia egzistuoti fizinei teleportacijai.

Viskas pasaulyje yra informacija, įskaitant materiją. Kvantiniai fizikai padarė tokią išvadą. 2008 m., remiantis teorine duomenų baze, kvantinį susipynimą buvo galima pamatyti plika akimi.

Tai dar kartą rodo, kad esame ant didžiųjų atradimų – judėjimo erdvėje ir laike – slenksčio. Laikas Visatoje yra diskretiškas, todėl momentinis judėjimas dideliais atstumais leidžia patekti į skirtingus laiko tankius (remiantis Einšteino ir Boro hipotezėmis). Galbūt ateityje tai taps realybe, kaip ir mobilusis telefonas šiandien.

Aetherdinamika ir kvantinis susipynimas

Kai kurių pirmaujančių mokslininkų teigimu, kvantinis susipynimas paaiškinamas tuo, kad erdvė užpildyta savotišku eteriu – juodąja medžiaga. Bet kuri elementari dalelė, kaip žinome, egzistuoja bangos ir korpuso (dalelės) pavidalu. Kai kurie mokslininkai mano, kad visos dalelės yra tamsios energijos „drobėje“. Tai nėra lengva suprasti. Pabandykime išsiaiškinti kitaip – ​​asociacijos būdu.

Įsivaizduokite save jūros pakrantėje. Nestiprus vėjelis ir silpnas vėjas. Ar matai bangas? O kažkur tolumoje, saulės spindulių atspindžiuose, matosi burlaivis.
Laivas bus mūsų elementarioji dalelė, o jūra – eteris (tamsioji energija).
Jūra gali judėti matomų bangų ir vandens lašų pavidalu. Lygiai taip pat visos elementarios dalelės gali būti tiesiog jūra (jos neatskiriama dalis) arba atskira dalelė – lašas.

Tai supaprastintas pavyzdys, viskas yra šiek tiek sudėtingesnė. Dalelės, kuriose nėra stebėtojo, yra bangos formos ir neturi konkrečios vietos.

Balta burlaivis yra atskiras objektas, jis skiriasi nuo jūros vandens paviršiaus ir struktūros. Lygiai taip pat energijos vandenyne yra „viršūnių“, kurias galime suvokti kaip mums žinomų jėgų, suformavusių materialiąją pasaulio dalį, apraišką.

Mikropasaulis gyvena pagal savo įstatymus

Kvantinio susipynimo principą galima suprasti, jei atsižvelgsime į tai, kad elementariosios dalelės yra bangų pavidalo. Neturėdamos konkrečios vietos ir savybių, abi dalelės gyvena energijos vandenyne. Tuo metu, kai pasirodo stebėtojas, banga „transformuojasi“ į objektą, kurį galima liesti. Antroji dalelė, stebėdama pusiausvyros sistemą, įgyja priešingų savybių.

Aprašytas straipsnis nėra skirtas glaustam moksliniam kvantinio pasaulio aprašymui. Paprasto žmogaus gebėjimas suprasti yra pagrįstas pateiktos medžiagos supratimo prieinamumu.

Dalelių fizika tiria kvantinių būsenų susipynimą, pagrįstą elementariosios dalelės sukimu (sukimu).

Moksline kalba (supaprastinta) – kvantinis susipynimas apibrėžiamas skirtingais sukiniais. Stebėdami objektus, mokslininkai pamatė, kad gali egzistuoti tik du sukimai - išilgai ir skersai. Kaip bebūtų keista, kitose pozicijose dalelės „nepozuoja“ stebėtojui.

Nauja hipotezė – naujas požiūris į pasaulį

Mikrokosmoso – elementariųjų dalelių erdvės – tyrimas sukėlė daugybę hipotezių ir prielaidų. Kvantinio susipynimo poveikis paskatino mokslininkus susimąstyti apie kažkokios kvantinės mikrogardelės egzistavimą. Jų nuomone, kiekviename mazge – susikirtimo taške – yra kvantas. Visa energija yra vientisa gardelė, o dalelių pasireiškimas ir judėjimas galimas tik per gardelės mazgus.

Tokios grotelės „lango“ dydis yra gana mažas, o išmatuoti naudojant šiuolaikinę įrangą neįmanoma. Tačiau norėdami patvirtinti arba paneigti šią hipotezę, mokslininkai nusprendė ištirti fotonų judėjimą erdvinėje kvantinėje gardelėje. Esmė ta, kad fotonas gali judėti arba tiesiai, arba zigzagais – palei gardelės įstrižainę. Antruoju atveju, įveikęs didesnį atstumą, jis išleis daugiau energijos. Atitinkamai jis skirsis nuo fotono, judančio tiesia linija.

Galbūt laikui bėgant sužinosime, kad gyvename erdvinėje kvantinėje gardelėje. Arba gali pasirodyti, kad tai neteisinga. Tačiau būtent kvantinio susipynimo principas rodo gardelės egzistavimo galimybę.

Paprastais žodžiais tariant, hipotetiniame erdviniame „kube“ vieno veido apibrėžimas turi aiškią priešingą kito veido prasmę. Tai erdvės – laiko – struktūros išsaugojimo principas.

Epilogas

Norint suprasti stebuklingą ir paslaptingą kvantinės fizikos pasaulį, verta atidžiai pažvelgti į mokslo raidą per pastaruosius penkis šimtus metų. Anksčiau buvo manoma, kad Žemė yra plokščia, o ne sferinė. Priežastis akivaizdi: jei priimsite apvalią formą, vanduo ir žmonės negalės susilaikyti.

Kaip matome, problema kilo dėl to, kad nebuvo visapusiškos visų veikiančių jėgų vizijos. Gali būti, kad šiuolaikinis mokslas neturi pakankamai visų veikiančių jėgų vizijos, kad suprastų kvantinę fiziką. Dėl regėjimo spragų susidaro prieštaravimų ir paradoksų sistema. Galbūt stebuklingame kvantinės mechanikos pasaulyje yra atsakymai į užduodamus klausimus.

Nurodo „Visatos teoriją“

Kvantinis susipynimas


Internete yra tiek daug gerų straipsnių, padedančių išplėtoti adekvačias idėjas apie „įsipainiojusias būsenas“, kad belieka atlikti tinkamiausias atrankas, kuriant tokį aprašo lygį, kuris atrodo priimtinas pasaulėžiūrinei svetainei.

Straipsnio tema: Daugeliui žmonių artima mintis, kad taip galima paaiškinti visas žavias susipynusių būsenų keistenybes. Nežiūrėdami sumaišome juodus ir baltus rutuliukus, supakuojame į dėžutes ir siunčiame įvairiomis kryptimis. Atidarome dėžutę iš vienos pusės, žiūrime: juodas rutulys, po kurio esame 100% tikri, kad kitoje dėžutėje yra baltas rutulys. Tai viskas:)

Straipsnio tikslas – ne griežtas įsigilinimas į visas „susipainiojusių būsenų“ supratimo ypatybes, o sudaryti bendrų idėjų sistemą, suvokiant pagrindinius principus. Būtent taip ir reikėtų elgtis su viskuo, kas parašyta aukščiau :)

Iš karto nustatykime apibrėžiantį kontekstą. Kai specialistai (o ne diskutuotojai, nutolę nuo šios specifikos, kai kuriais atžvilgiais net mokslininkai) kalba apie kvantinių objektų susipynimą, jie turi omenyje ne tai, kad jis sudaro vieną visumą su tam tikru ryšiu, o tai, kad vienas objektas tampa kvantinėmis charakteristikomis lygiai tokiomis pat kaip ir kito. (bet ne visi, o tie, kurie leidžia poroje tapatybę pagal Paulio dėsnį, todėl susiporavusios poros sukinys yra ne identiškas, o vienas kitą papildantis). Tie. Tai nėra ryšys ar sąveikos procesas, nors jį galima apibūdinti bendra funkcija. Tai būdinga būsenai, kurią galima „teleportuoti“ iš vieno objekto į kitą (beje, taip pat yra plačiai paplitęs klaidingas žodžio „teleportas“ aiškinimas). Jei to neapsispręsite iš karto, galite labai toli nueiti į mistiką. Todėl visų pirma kiekvienas, kuris domisi šia problema, turi būti aiškiai tikras, ką tiksliai reiškia „painiojimas“.

Dėl ko buvo pradėtas šis straipsnis, kyla vienas klausimas. Kvantinių objektų elgsenos skirtumas nuo klasikinių pasireiškia vieninteliu iki šiol žinomu patikrinimo metodu: ar tenkinama tam tikra tikrinimo sąlyga, ar ne - Bello nelygybė (plačiau žemiau), kuri „susipainiotiems“ kvantiniams objektams elgiasi taip, tarsi. tarp įvairiomis kryptimis siunčiamų objektų yra ryšys. Tačiau panašu, kad ryšys netikras, nes... negalima perduoti nei informacijos, nei energijos.

Be to, šis ryšys nepriklauso nei iš atstumo, nei iš laiko: jei du objektai buvo „įsipainioję“, tai, nepaisant kiekvieno iš jų saugumo, antrasis elgiasi taip, lyg ryšys tebeegzistuotų (nors tokio ryšio buvimą galima nustatyti tik išmatavus abu objektus, toks matavimas gali būti atskirti laike: pirmiausia išmatuokite, tada sunaikinkite vieną iš objektų, o antrą išmatuokite vėliau. Pavyzdžiui, žr. R. Penrose). Akivaizdu, kad bet kokio tipo „ryšys“ šiuo atveju tampa sunkiai suprantamas ir kyla toks klausimas: ar gali išmatuoto parametro (kuris apibūdinamas bangine funkcija) praradimo tikimybės dėsnis gali būti toks, kad kiekviename gale nelygybė nepažeista, o su bendra statistika abiejuose galuose - buvo pažeista - ir be jokio ryšio, natūralu, išskyrus ryšį bendro atsiradimo aktu.

Atsakysiu iš anksto: taip, gali, su sąlyga, kad šios tikimybės nėra „klasikinės“, o veikia su sudėtingais kintamaisiais, apibūdinančiais „būsenų superpoziciją“ – tarsi tuo pačiu metu būtų rastos visos galimos būsenos su tam tikra tikimybe. kiekviena.

Kvantiniams objektams jų būsenos (banginės funkcijos) aprašas yra būtent toks. Jei mes kalbame apie elektrono padėties apibūdinimą, tada tikimybė jį rasti lemia „debesies“ topologiją - elektronų orbitos formą. Kuo skiriasi klasikinis ir kvantinis?

Įsivaizduokime greitai besisukantį dviračio ratą. Kažkur ant jo yra raudonas diskas šoniniam žibintų atšvaitui, tačiau šioje vietoje matome tik tankesnį neryškumo šešėlį. Tikimybė, kad įdėjus lazdą į ratą, atšvaitas nuo pagaliuko sustos tam tikroje padėtyje, tiesiog nustatoma: viena lazda – viena tam tikra padėtis. Įkišame du pagaliukus, bet ratą sustabdys tik tas, kuris yra kiek anksčiau. Jei bandysime visiškai sukišti lazdas tuo pačiu metu, užtikrinant, kad tarp lazdos galų, besiliečiančių prie rato, nebūtų laiko, atsiras tam tikras netikrumas. „Nebuvo laiko“ tarp sąveikų su objekto esme - visa kvantinių stebuklų supratimo esmė :)

To, kas lemia elektrono formą, „sukimosi“ greitis (poliarizacija – elektrinių trikdžių sklidimas) yra lygus didžiausiam greičiui, kuriuo bet kas gali sklisti gamtoje (šviesos greičiui vakuume). Žinome reliatyvumo teorijos išvadą: šiuo atveju šio trikdymo laikas tampa lygus nuliui: gamtoje nėra nieko, kas galėtų įvykti tarp bet kurių dviejų šio trikdymo sklidimo taškų; laikas jam neegzistuoja. Tai reiškia, kad trikdymas gali sąveikauti su kitomis jį įtakojančiomis „lazdelėmis“, negaišdamas laiko - tuo pačiu metu. O tikimybę, koks rezultatas bus gautas konkrečiame erdvės taške sąveikos metu, reikia apskaičiuoti tikimybe, kuri atsižvelgia į šį reliatyvistinį efektą: Dėl to, kad elektronui nėra laiko, jis negali pasirinkti mažiausią skirtumą tarp dviejų „lazdelių“ sąveikaujant su jais ir tai daro tuo pačiu metužvelgiant iš jo „požiūrio taško“: elektronas vienu metu praeina per du plyšius su skirtingu bangos tankiu kiekviename ir tada įsiterpia į save kaip dvi viena ant kitos esančios bangos.

Štai skirtumas tarp klasikinių ir kvantinių tikimybių aprašymų: Kvantinės koreliacijos yra „stipresnės“ nei klasikinės. Jeigu monetos iškritimo rezultatas priklauso nuo daugelio įtakojančių faktorių, bet apskritai jie yra savitai nulemti taip, kad tereikia pagaminti tikslią monetų išmetimo mašiną ir jos kris taip pat, atsitiktinumas „dingo. “. Jei padarysite automatą, kuris kiša į elektronų debesį, tai rezultatą lems tai, kad kiekvienas smūgis visada pataikys į kažką, tik su skirtingu elektrono esmės tankiu šioje vietoje. Nėra kitų veiksnių, išskyrus statinį tikimybės rasti išmatuotą parametrą elektrone pasiskirstymą, ir tai yra visiškai kitokio pobūdžio determinizmas nei klasika. Bet tai irgi determinizmas, t.y. ji visada apskaiciuojama, atkuriama, tik su bangine funkcija nusakomu singuliarumu. Be to, toks kvantinis determinizmas susijęs tik su holistiniu kvantinės bangos aprašymu. Bet, nesant savo laiko kvantui, jis sąveikauja absoliučiai atsitiktinai, t.y. nėra kriterijaus iš anksto numatyti jo parametrų visumos matavimo rezultatą. Šia prasme e (klasikiniu požiūriu) yra absoliučiai nedeterministinis.

Elektronas tikrai ir tikrai egzistuoja statinio darinio (o ne taško, besisukančio orbitoje) pavidalu – stovinčios elektros trikdžių bangos, turinčios dar vieną reliatyvistinį efektą: statmenai pagrindinei „plitimo“ plokštumai (aišku kodėl citatos:) elektrinis laukas atsiranda ir statiska poliarizacijos sritis, kuri gali paveikti ta pati kito elektrono sritis: magnetinis momentas. Elektrinė poliarizacija elektrone suteikia elektros krūvio efektą, jo atspindį erdvėje kaip galimybę paveikti kitus elektronus – magnetinio krūvio pavidalu, kuris negali egzistuoti pats savaime be elektros krūvio. O jei elektriškai neutraliame atome elektrinius krūvius kompensuoja branduolio krūviai, tai magnetinius galima nukreipti viena kryptimi ir gauname magnetą. Išsamesnių idėjų apie tai rasite straipsnyje .

Kryptis, kuria bus nukreiptas elektrono magnetinis momentas, vadinama sukimu. Tie. sukinys yra elektrinės deformacijos bangos uždėjimo ant savęs ir stovinčios bangos susidarymo metodo pasireiškimas. Skaitinė sukinio reikšmė atitinka bangos, besikuriančios ant savęs, charakteristiką.Elektronui: +1/2 arba -1/2 (ženklas simbolizuoja poliarizacijos šoninio poslinkio kryptį – „magnetinį“ vektorių).

Jei ant išorinio atomo elektronų sluoksnio yra vienas elektronas ir staiga prie jo prisijungia kitas (susidaro kovalentinis ryšys), tada jie, kaip du magnetai, iš karto pakyla į 69 padėtį, sudarydami porinę konfigūraciją su ryšio energija, kuri turi būti sulaužytas, kad vėl galėtų dalytis šiais elektronais. Bendras tokios poros sukimas yra 0.

Sukimas yra parametras, kuris vaidina svarbų vaidmenį nagrinėjant susipainiojusias būsenas. Laisvai sklindančiam elektromagnetiniam kvantui sąlyginio parametro „suktis“ esmė vis dar ta pati: magnetinio lauko komponento orientacija. Bet jis nebėra statiškas ir nesukelia magnetinio momento atsiradimo. Norėdami tai pataisyti, jums reikia ne magneto, o poliarizatoriaus plyšio.

Norėdami pasisemti idėjų apie kvantinį susipynimą, siūlau perskaityti populiarų ir trumpą Aleksejaus Levino straipsnį: Aistra per atstumą . Sekite nuorodą ir perskaitykite prieš tęsdami :)

Taigi konkretūs matavimo parametrai realizuojami tik matavimo metu, o prieš tai egzistavo to tikimybių skirstinio pavidalu, kuris sudarė makropasauliui matomą mikropasaulio poliarizacijos sklidimo dinamikos reliatyvistinių efektų statiką. Suprasti esmę to, kas vyksta kvantiniame pasaulyje, reiškia įsiskverbti į tokių reliatyvistinių efektų apraiškas, kurios iš tikrųjų suteikia kvantiniam objektui būties savybes. tuo pačiu metu skirtingose ​​būsenose iki konkretaus matavimo momento.

„Įsipainiojusi būsena“ – tai visiškai deterministinė dviejų dalelių būsena, kuri turi tokią identišką kvantinių savybių aprašymo priklausomybę, kad abiejuose galuose atsiranda nuoseklios koreliacijos dėl kvantinės statikos esmės ypatumų, kurios turi nuoseklų elgesį. Skirtingai nuo makrostatistikos, kvantinėje statistikoje įmanoma išsaugoti tokias koreliacijas objektams, atskirtiems erdvėje ir laike ir anksčiau nuosekliais parametrais. Tai pasireiškia Bello nelygybių išsipildymo statistikoje.

Kuo skiriasi dviejų vandenilio atomų nesusipainiojusių elektronų banginė funkcija (mūsų abstraktus aprašymas) (nors jos parametrai yra visuotinai priimtini kvantiniai skaičiai)? Nieko, išskyrus tai, kad nesuporuoto elektrono sukinys yra atsitiktinis, nepažeidžiant Bello nelygybių. Susidarius suporuotai sferinei orbitalei helio atome arba dviejų vandenilio atomų kovalentiniuose ryšiuose, susidarius dviem atomais apibendrintai molekulinei orbitalei, dviejų elektronų parametrai yra tarpusavyje suderinti. . Jeigu įsipainioję elektronai suskaidomi ir jie pradeda judėti skirtingomis kryptimis, tai jų banginėje funkcijoje atsiranda parametras, kuris apibūdina tikimybių tankio poslinkį erdvėje kaip laiko funkciją – trajektoriją. Ir tai visai nereiškia, kad funkcija išsitepa erdvėje vien dėl to, kad tikimybė rasti objektą tam tikru atstumu nuo jo tampa lygi nuliui ir nebelieka nieko, kas rodytų elektrono radimo tikimybę. Tai ypač akivaizdu, jei pora yra atskirta laiku. Tie. atsiranda du vietiniai ir nepriklausomi deskriptoriai, judantys daleles priešingomis kryptimis. Nors vis dar galima naudoti vieną bendrą aprašą, bet tai yra įformintojo teisė :)

Be to, dalelių aplinka negali likti abejinga ir taip pat gali būti keičiama: aplinkos dalelių banginės funkcijos aprašai keičiasi ir per savo įtaką dalyvauja gaunamoje kvantinėje statistikoje (sukeliantys tokius reiškinius kaip dekoherence). . Tačiau paprastai beveik niekas negalvoja to apibūdinti kaip bendrą bangos funkciją, nors tai taip pat įmanoma.

Daugelyje šaltinių pateikiama išsami informacija apie šiuos reiškinius.

M.B. Mensky rašo:

"Vienas iš šio straipsnio tikslų... yra pagrįsti nuomonę, kad egzistuoja kvantinės mechanikos formuluotė, kurioje nekyla jokių paradoksų ir kurioje galima atsakyti į visus klausimus, kuriuos paprastai užduoda fizikai. Paradoksai atsiranda tik tada, kai tyrėjo netenkina šis „fizinis“ teorijos lygis, kai jis kelia klausimus, kurių fizikoje nėra įprasta kelti, kitaip tariant, kai imasi bandyti peržengti fizikos ribas.. ...Konkretūs kvantinės mechanikos bruožai, susiję su įsipainiojusiomis būsenomis, pirmą kartą buvo suformuluoti atsižvelgiant į EPR paradoksą, tačiau šiuo metu jie nėra suvokiami kaip paradoksaliai. Žmonėms, kurie profesionaliai dirba su kvantiniu mechaniniu formalizmu (t. y. daugumai fizikų), nėra nieko paradoksalu nei EPR porose, nei net labai sudėtingose ​​susietose būsenose, kuriose yra daug terminų ir daug veiksnių kiekviename termine. Bet kokių eksperimentų su tokiomis būsenomis rezultatus iš esmės lengva apskaičiuoti (nors, žinoma, galimi techniniai sunkumai apskaičiuojant sudėtingas susipynusias būsenas)."

Nors, reikia pasakyti, diskusijose apie sąmonės vaidmenį, sąmoningą pasirinkimą kvantinėje mechanikoje, Menskis pasirodo esąs tas, kuris imasi " išdrįskite pabandyti peržengti fizikos ribas". Tai primena bandymus priartėti prie psichikos reiškinių. Kaip kvantinis profesionalas Menskis yra geras, bet psichikos mechanizmuose jis, kaip ir Penrose'as, yra naivus.

Labai trumpai ir sąlyginai (tik esmei suvokti) apie įsipainiojusių būsenų panaudojimą kvantinėje kriptografijoje ir teleportacijoje (nes būtent tai stebina dėkingų žiūrovų vaizduotę).

Taigi, kriptografija. Turite išsiųsti seką 1001

Mes naudojame du kanalus. Pagal pirmąjį siunčiame įsipainiojusią dalelę, o pagal antrą – informaciją, kaip interpretuoti gautus duomenis vieno bito pavidalu.

Tarkime, kad yra alternatyva galimai panaudoto kvantinio mechaninio parametro sukinio būsenai sąlyginėse būsenose: 1 arba 0. Be to, jų atsiradimo tikimybė su kiekviena išlaisvinta dalelių pora yra tikrai atsitiktinė ir neperteikia jokios reikšmės.

Pirmas perkėlimas. Matuojant Čia paaiškėjo, kad dalelės būsena 1. Tai reiškia, kad kitos būsenos 0. Taigi apimtis Gavus reikiamą vienetą, perduodame 1 bitą. Ten jie išmatuoja dalelės būseną ir, norėdami sužinoti, ką ji reiškia, prideda prie perduodamo 1. Gauna 1. Tuo pačiu baltu patikrina, ar neįtrūko įsipainiojimas, t.y. informacija nebuvo perimta.

Antra pavara. Rezultatas vėl yra būsena 1. Kitas turi 0. Perduodame informaciją - 0. Sudedame ir gauname reikiamą 0.

Trečia pavara. Būsena čia yra 0. Ten, tai reiškia - 1. Norėdami gauti 0, perduodame 0. Sudedame, gauname 0 (mažiausiu skaitmeniu).

Ketvirta. Čia - 0, ten - 1, tai reikia interpretuoti kaip 1. Perduodame informaciją - 0.

Toks principas. Informacinio kanalo perėmimas nenaudingas dėl visiškai nekoreliuotos sekos (pirmosios dalelės būsenos šifravimas raktu). Užtemdyto kanalo perėmimas – sutrinka priėmimas ir aptinkamas. Perdavimo statistika iš abiejų galų (gavančioji pusė turi visus reikiamus duomenis apie perduodamą galą) pagal Bell nustato perdavimo teisingumą ir neperėmimą.

Štai kas yra teleportacija. Ten nėra jokios savavališkos būsenos dalelei, o tik numatymas, kokia ši būsena bus po to (ir tik po to), kai čia esanti dalelė bus pašalinta iš ryšio matavimo būdu. Ir tada jie sako, kad įvyko kvantinės būsenos perkėlimas su papildomos būsenos sunaikinimu pradiniame taške. Čia gavę informaciją apie būseną, galite vienaip ar kitaip pakoreguoti kvantinį mechaninį parametrą, kad jis būtų identiškas čia esančiam, bet čia jo nebebus, o kalbama apie draudimo įgyvendinimą. klonavimas surištoje būsenoje.

Atrodo, kad makrokosme šiems reiškiniams nėra analogų, nėra kamuoliukų, obuolių ir pan. iš klasikinės mechanikos negali paaiškinti tokio kvantinių objektų prigimties pasireiškimo (iš tikrųjų tam nėra esminių kliūčių, kurios bus parodytos žemiau paskutinėje nuorodoje). Tai yra pagrindinis sunkumas tiems, kurie nori gauti matomą „paaiškinimą“. Tai nereiškia, kad toks dalykas neįsivaizduojamas, kaip kartais teigiama. Tai reiškia, kad reikia gana kruopščiai dirbti su reliatyvistinėmis sąvokomis, kurios atlieka lemiamą vaidmenį kvantiniame pasaulyje ir jungia kvantinį pasaulį su makro pasauliu.

Bet tai taip pat nėra būtina. Prisiminkime pagrindinę vaizdavimo užduotį: koks turėtų būti išmatuoto parametro materializavimosi dėsnis (kuris apibūdinamas bangine funkcija), kad nelygybė nebūtų pažeista kiekviename gale, o esant bendrai statistikai, ji būtų pažeista abu galai. Yra daug aiškinimų, kaip tai suprasti, naudojant pagalbines abstrakcijas. Apie tą patį jie kalba skirtingomis tokių abstrakcijų kalbomis. Du iš jų yra reikšmingiausi pagal teisingumą, kurį dalijasi idėjų nešėjai. Tikiuosi, kad po to, kas pasakyta, bus aišku, ką turiu omenyje :)

Kopenhagos interpretacija iš straipsnio apie Einšteino-Podolskio-Roseno paradoksą:

" (EPR paradoksas) – akivaizdus paradoksas... Tiesą sakant, įsivaizduokime, kad dviejose planetose skirtinguose Galaktikos galuose yra dvi monetos, kurios visada iškrenta vienodai. Jei įrašysite visų metimų rezultatus ir palyginsite juos, jie sutaps. Patys lašai yra atsitiktiniai ir niekaip negali būti paveikti. Neįmanoma, pavyzdžiui, sutikti, kad galvutės yra viena, o uodegos – nulis, ir taip perduoti dvejetainį kodą. Juk nulių ir vienetų seka bus atsitiktinė abiejuose laido galuose ir neturės jokios reikšmės.

Pasirodo, paradoksui yra paaiškinimas, kuris logiškai suderinamas ir su reliatyvumo teorija, ir su kvantine mechanika.

Galima manyti, kad šis paaiškinimas pernelyg neįtikėtinas. Taip keista, kad Albertas Einšteinas niekada netikėjo „dievu, kuris žaidžia kauliukais“. Tačiau kruopštūs eksperimentiniai Bello nelygybių testai parodė, kad mūsų pasaulyje pasitaiko ne vietinių avarijų.

Svarbu pabrėžti vieną jau minėtą šios logikos pasekmę: susipynusių būsenų matavimai tik nepažeis reliatyvumo ir priežastingumo teorijos, jei jie bus tikrai atsitiktiniai. Tarp matavimo aplinkybių ir trikdymo neturėtų būti jokio ryšio, nė menkiausio modelio, nes kitaip atsirastų momentinio informacijos perdavimo galimybė. Taigi kvantinė mechanika (Kopenhagos interpretacijoje) ir susipynusių būsenų egzistavimas įrodo indeterminizmo buvimą gamtoje."

Statistiniu aiškinimu tai parodoma naudojant „statistinių ansamblių“ sąvoką (tas pats):

Statistinio interpretavimo požiūriu, realūs kvantinės mechanikos tyrimo objektai yra ne atskiri mikroobjektai, o statistiniai mikroobjektų ansambliai, esantys tose pačiose makrosąlygose. Atitinkamai, frazė „dalelė yra tokioje ir tokioje būsenoje“ iš tikrųjų reiškia „dalelė priklauso tokiam ir tokiam statistiniam ansambliui“ (sudarytam iš daugybės panašių dalelių). Todėl vieno ar kito pogrupio pasirinkimas pradiniame ansamblyje reikšmingai pakeičia dalelės būseną, net jei tiesioginio poveikio jai nebuvo.

Kaip paprastą iliustraciją apsvarstykite šį pavyzdį. Paimkime 1000 spalvotų monetų ir išmeskime jas ant 1000 popieriaus lapų. Tikimybė, kad „galvų“ įspaudas ant atsitiktinai parinkto popieriaus lapo yra lygi 1/2. Tuo tarpu lapams, ant kurių monetos guli „uodegomis“ į viršų, ta pati tikimybė lygi 1 – tai yra, turime galimybę netiesiogiai nustatyti atspaudo pobūdį popieriuje, žiūrint ne į patį lapą, o tik į monetą. Tačiau su tokiu „netiesioginiu matavimu“ siejamas ansamblis visiškai skiriasi nuo originalaus: jame jau nebe 1000 popieriaus lapų, o tik apie 500!

Taigi EPR „paradokso“ neapibrėžtumo santykio paneigimas galiotų tik tuo atveju, jei originaliam ansambliui būtų galima vienu metu pasirinkti netuščią pogrupį ir pagal impulsą, ir pagal erdvines koordinates. Tačiau kaip tik tokio pasirinkimo neįmanomumą patvirtina neapibrėžtumo santykis! Kitaip tariant, EPR „paradoksas“ iš tikrųjų pasirodo kaip užburtas ratas: jis iš anksto suponuoja paneigiamo fakto neteisingumą.

Galimybė su „superluminal signalu“ iš dalelės Aį dalelę B taip pat pagrįstas tuo, kad neatsižvelgiama į tai, kad išmatuotų dydžių verčių tikimybių skirstiniai apibūdina ne konkrečią dalelių porą, o statistinį ansamblį, kuriame yra daug tokių porų. Čia panašia galima laikyti situaciją, kai tamsoje ant paklodės metama spalvota moneta, po kurios lapas ištraukiamas ir užrakinamas seife. Tikimybė, kad „galvos“ bus įspaustos ant lapo, a priori yra lygi 1/2. O tai, kad ji tuoj pat virs 1, jei įjungsime šviesą ir įsitikinsime, kad moneta guli „uodega“ į viršų, nėra visa tai rodo mūsų žvilgsnio gebėjimą migloti chemiškai paveikti seife užrakintus daiktus.

Daugiau informacijos: A.A.Pechenkin Ensemble kvantinės mechanikos interpretacijos JAV ir SSRS.

Ir dar viena interpretacija iš http://ru.philosophy.kiev.ua/iphras/library/phnauk5/pechen.htm:

Van Fraasseno modalinė interpretacija daro prielaidą, kad fizinės sistemos būsena kinta tik priežastingai, t.y. Tačiau pagal Schrödingerio lygtį ši būsena vienareikšmiškai nenustato fizinių dydžių verčių, aptiktų matavimo metu.

Poperis čia pateikia savo mėgstamą pavyzdį: vaikišką biliardą (spygliais apdengta lenta, ant kurios iš viršaus rieda metalinis rutulys, simbolizuojantis fizinę sistemą – pats biliardas simbolizuoja eksperimentinį įrenginį). Kai kamuolys yra biliardo viršuje, turime vieną polinkį, vieną polinkį pasiekti tam tikrą tašką lentos apačioje. Jei kamuoliuką pritvirtinome kur nors lentos viduryje, pakeitėme eksperimento specifikaciją ir gavome naują polinkį. Čia pilnai išsaugomas kvantinis mechaninis neapibrėžtumas: Popperis teigia, kad biliardas nėra mechaninė sistema. Negalime atsekti kamuolio trajektorijos. Tačiau „bangų paketo redukcija“ nėra subjektyvaus stebėjimo aktas, tai sąmoningas eksperimentinės situacijos iš naujo apibrėžimas, patirties sąlygų susiaurinimas.

Apibendrinkime faktus

1. Nepaisant absoliutaus parametro praradimo atsitiktinumo matuojant įsipainiojusias dalelių poras masėje, kiekvienoje tokioje poroje pasireiškia nuoseklumas: jei paaiškėja, kad vienos poros dalelės sukimasis yra 1, tai kita poroje esanti dalelė turi priešingas sukimasis. Tai iš principo suprantama: kadangi suporuotoje būsenoje negali būti dviejų dalelių, turinčių tą patį sukimąsi toje pačioje energetinėje būsenoje, tada joms suskaidžius, jei išsaugomas nuoseklumas, sukimai išlieka nuoseklūs. Kai tik nustatomas vieno sukinys, kito sukinys tampa žinomas, nepaisant to, kad sukimosi atsitiktinumas atliekant matavimus iš abiejų pusių yra absoliutus.

Leiskite trumpai paaiškinti visiškai identiškų dviejų dalelių būsenų negalimumą vienoje erdvėlaikio vietoje, kuri atomo elektroninio apvalkalo sandaros modelyje vadinama Pauli principu, o kvantiniame mechaniniame nuoseklių būsenų svarstyme. - neįmanomumo klonuoti įsipainiojusių objektų principas.

Yra kažkas (dar nežinomo), kas iš tikrųjų trukdo kvantui ar jį atitinkančiai dalelei būti vienoje vietinėje būsenoje su kita – visiškai identiškais kvantiniais parametrais. Tai realizuojama, pavyzdžiui, Kazimiero efekte, kai virtualūs kvantai tarp plokščių gali turėti bangos ilgį, ne didesnį už tarpą. Ir tai ypač aiškiai suvokiama aprašant atomą, kai duoto atomo elektronai negali turėti visais atžvilgiais identiškų parametrų, o tai aksiomiškai formalizuoja Pauli principas.

Pirmame, artimiausiame sluoksnyje, gali būti tik 2 elektronai sferos pavidalu (s- elektronai). Jei jų yra du, tada jie turi skirtingus sukimus ir yra suporuoti (susipainioti), sudarydami bendrą bangą su rišančia energija, kurią reikia pritaikyti šiai porai nutraukti.

Antrame, tolimesniame ir aukštesniame energijos lygyje, gali būti 4 dviejų suporuotų elektronų „orbitalės“ stovinčios bangos pavidalu, panašios į aštuonių tūrinių skaičių (p-elektronai). Tie. didesnė energija užima daugiau vietos ir leidžia greta būti kelioms jau sujungtoms poroms. Antrasis sluoksnis energetiškai skiriasi nuo pirmojo sluoksnio 1 galima atskiros energijos būsena (kuo daugiau išorinių elektronų, apibūdinančių erdviškai didesnį debesį, taip pat turi didesnę energiją).

Trečiasis sluoksnis jau erdviškai leidžia turėti 9 orbitas keturkampės formos (d-elektronai), ketvirta - 16 orbitų - 32 elektronai, forma kurios taip pat primena tūrinius aštuonetus įvairiais deriniais ( f- elektronai).

Elektronų debesų formos:

a – s-elektronai; b – p-elektronai; c – d-elektronai.

Šis diskretiškai skirtingų būsenų rinkinys – kvantiniai skaičiai – apibūdina galimas vietines elektronų būsenas. Ir štai kas iš to išeina.

Kai du elektronai turi skirtingus sukiniusvienasenergijos lygis (nors tai iš esmės nėra būtina: http://www.membrana.ru/lenta/?9250) pora, dėl energijos ir ryšio susidaro bendra „molekulinė orbita“, kurios energijos lygis yra mažesnis. Du vandenilio atomai, kurių kiekvienas turi nesuporuotą elektroną, sudaro bendrą šių elektronų persidengimą - (paprastą kovalentinę) jungtį. Kol jis egzistuoja, tikrai du elektronai turi bendrą nuoseklią dinamiką – bendrą bangų funkciją. Kiek ilgai? „Temperatūra“ ar kažkas, kas gali kompensuoti surišimo energiją, ją suardo. Atomai skrenda vienas nuo kito, o elektronai nebeturi bendros bangos, bet vis dar yra vienas kitą papildančioje, nuoseklioje susipynimo būsenoje. Bet ryšio jau nebėra :) Tai momentas, kai apie bendrąją banginę funkciją kalbėti nebeverta, nors tikimybinės charakteristikos kvantinės mechanikos požiūriu išlieka tokios pat, lyg ši funkcija ir toliau apibūdintų bendrąją bangą. Tai tiksliai reiškia išlaikyti gebėjimą parodyti nuoseklią koreliaciją.

Aprašytas susipynusių elektronų gamybos per jų sąveiką metodas: http://www.scientific.ru/journal/news/n231201.html arba liaudiškai-schematiškai – in http://www.membrana.ru/articles/technic/2002/02/08/170200.html : " Norint sukurti elektronų „neapibrėžtumo santykį“, tai yra, „supainioti“ juos, reikia įsitikinti, kad jie visais atžvilgiais yra identiški, o tada paleisti šiuos elektronus į pluošto skirstytuvą. Mechanizmas „suskaldo“ kiekvieną elektroną, sukeldamas juos į kvantinę „superpozicijos“ būseną, dėl kurios elektronas vienodai judės vienu iš dviejų kelių.".

2. Turint abiejų pusių matavimų statistiką, abipusis atsitiktinumo porose nuoseklumas tam tikromis sąlygomis gali lemti Bello nelygybės pažeidimą. Bet ne naudojant kokį nors specialų, dar nežinomą kvantinį mechaninį objektą.

Šis trumpas straipsnis (remiantis R. Pnrose'o pateiktomis idėjomis) leidžia atsekti (parodyti principą, pavyzdį), kaip tai įmanoma: Bello nelygybių reliatyvumas arba Naujasis nuogo karaliaus protas. Tai parodyta ir A.V.Belinskio darbe, paskelbtame „Advances in Physical Sciences: Bell's theorem“ be lokalumo prielaidos. Kitas A.V.Belinskio darbas, skirtas pamąstymui besidomintiems: Bello teorema trichotominiams stebimiems reiškiniams, taip pat diskusija su D.P.S., prof., akad. Valerijus Borisovičius Morozovas (visuotinai pripažintas FRTK-MIPT fizikos katedros ir „dubinuškų“ forumų šviesulys), kur Morozovas siūlo apsvarstyti abu šiuos A. V. Belinskio darbus: Aspekto patirtis: klausimas Morozovui. Ir be temos apie Bello nelygybių pažeidimų galimybę neįvedant jokių ilgalaikių veiksmų: Modeliavimas naudojant Belo nelygybę.

Atkreipkite dėmesį, kad „Bello nelygybių reliatyvumas arba naujas nuogo karaliaus protas“, taip pat „Bello teorema be lokalumo prielaidos“ šio straipsnio kontekste nepretenduoja į kvantinio mechaninio įsipainiojimo mechanizmo apibūdinimą. Užduotis parodyta paskutiniame pirmosios nuorodos sakinyje: „Nėra jokios priežasties Bello nelygybės pažeidimą laikyti neginčijamu bet kokio vietinio realizmo modelio paneigimu“. tie. jo panaudojimo riba yra pradžioje išdėstyta teorema: „Gali egzistuoti klasikinės vietovės modeliai, kuriuose Bello nelygybės bus pažeistos“. Diskusijoje yra papildomų paaiškinimų apie tai.

Taip pat pateiksiu modelį nuo savęs.
„Vietinio realizmo pažeidimas“ yra tik reliatyvistinis efektas.
Niekas (normalus) nesiginčija su tuo, kad maksimaliu greičiu (šviesos greičiu vakuume) judančiai sistemai nėra nei erdvės, nei laiko (Lorenco transformacija šiuo atveju duoda nulį laiko ir erdvės), t.y. kvantui jis vienu metu yra ir čia, ir ten, kad ir koks toli jis ten būtų.
Akivaizdu, kad įsipainioję kvantai turi savo atskaitos tašką. O elektronai yra tie patys kvantai stovinčios bangos būsenoje, t.y. egzistuojančios čia ir ten vienu metu per visą elektrono gyvavimo laiką. Visos kvantų savybės pasirodo iš anksto nulemtos mums, tiems, kurie tai suvokia iš išorės, štai kodėl. Galiausiai mus sudaro kvantai, kurių yra ir čia, ir ten. Jiems sąveikos sklidimo greitis (maksimalus greitis) yra be galo didelis. Bet visos šios begalybės yra skirtingos, kaip ir skirtingi atkarpų ilgiai, nors kiekviena turi begalinį taškų skaičių, tačiau šių begalybių santykis suteikia ilgių santykį. Taip mums atsiranda laikas ir erdvė.
Mums vietinis realizmas eksperimentuose pažeidžiamas, o kvantams – ne.
Tačiau šis neatitikimas niekaip neįtakoja tikrovės, nes praktiškai negalime pasinaudoti tokiu begaliniu greičiu. Nei informacija, nei ypač materija „kvantinės teleportacijos“ metu neperduodama neribotai greitai.
Taigi visa tai yra tik reliatyvistinio poveikio juokeliai, nieko daugiau. Jie gali būti naudojami kvantinėje kriptografijoje ar kitur, bet negali būti naudojami tikriems ilgalaikiams veiksmams.

Pažvelkime į esmę, ką rodo Bello nelygybės.
1. Jei skaitiklių orientacija abiejuose galuose yra vienoda, tada sukimosi matavimo rezultatas abiejuose galuose visada bus priešingas.
2. Jei skaitiklių orientacija yra priešinga, rezultatas bus toks pat.
3. Jei kairiojo matuoklio orientacija skiriasi nuo dešiniojo orientacijos mažiau nei tam tikru kampu, tada taškas 1 bus realizuotas ir sutapimai bus Bello numatytos nepriklausomų dalelių tikimybės ribose.
4. Jei kampas viršija, tada taškas 2 ir sutapimai bus didesni už Bello numatytą tikimybę.

Tie. mažesniu kampu gausime daugiausia priešingas sukinių vertes, o didesniu kampu gausime daugiausia identiškas.
Kodėl taip nutinka su sukimu, galima įsivaizduoti, turint omenyje, kad elektrono sukinys yra magnetas, be to, jis matuojamas pagal magnetinio lauko orientaciją (arba laisvajame kvante sukinys yra poliarizacijos kryptis ir matuojamas tarpo, per kurį turėtų kristi poliarizacijos sukimosi plokštuma, orientacija).
Akivaizdu, kad siųsdami magnetus, kurie iš pradžių buvo susieti ir siųsdami išlaikė abipusę orientaciją, matavimo metu juos paveiksime magnetiniu lauku (pasukdami viena ar kita kryptimi) taip, kaip nutinka kvantiniuose paradoksuose.
Akivaizdu, kad susidūrus su magnetiniu lauku (įskaitant kito elektrono sukimąsi), sukinys būtinai yra orientuotas pagal jį (kito elektrono sukimosi atveju abipusiai priešingas). Štai kodėl jie sako, kad „sukimosi orientacija vyksta tik matavimo metu“, tačiau tuo pat metu tai priklauso nuo pradinės padėties (į kurią pusę suktis) ir skaitiklio įtakos krypties.
Akivaizdu, kad tam nereikia atlikti tolimų veiksmų, kaip ir nebūtina numatyti tokio elgesio pradinėje dalelių būsenoje.
Turiu pagrindo manyti, kad iki šiol, matuojant atskirų elektronų sukinį, į tarpines sukimosi būsenas neatsižvelgiama, o tik daugiausia išilgai matavimo lauko ir prieš lauką. Metodų pavyzdžiai: , . Verta atkreipti dėmesį į šių metodų sukūrimo datą, kuri yra vėlesnė nei aukščiau aprašytų eksperimentų.
Pateiktas modelis, žinoma, yra supaprastintas (kvantiniuose reiškiniuose sukinys nėra būtent materialūs magnetai, nors jie suteikia visus stebimus magnetinius reiškinius) ir neatsižvelgia į daugybę niuansų. Todėl tai nėra tikro reiškinio aprašymas, o parodo tik galimą principą. Ir dar parodo, kaip blogai tiesiog pasitikėti aprašomuoju formalizmu (formulėmis), nesuvokiant to, kas vyksta esmės.
Be to, Aspeko straipsnio formuluotėje Bello teorema yra teisinga: „neįmanoma rasti teorijos su papildomu parametru, kuris tenkintų bendrą aprašymą ir atkartotų visas kvantinės mechanikos prognozes“. ir visai ne Penrose’o formuluotėje: „pasirodo, kad kvantinės teorijos prognozių tokiu (nekvantiniu) būdu atkurti neįmanoma“. Akivaizdu, kad norint įrodyti teoriją pagal Penrose'ą, būtina įrodyti, kad Bello nelygybių negalima pažeisti naudojant jokius modelius, išskyrus kvantinį mechaninį eksperimentą.

Tai kiek perdėtas, galima sakyti, vulgarus interpretacijos pavyzdys, tiesiog norint parodyti, kaip galima apsigauti tokiais rezultatais. Tačiau paaiškinkime, ką Bellas norėjo įrodyti ir kas iš tikrųjų atsitinka. Bellas sukūrė eksperimentą, rodantį, kad įsipainiojus nėra iš anksto egzistuojančio „algoritmo a“, iš anksto nustatytos koreliacijos (kaip tuo metu tvirtino oponentai, sakydami, kad yra keletas paslėptų parametrų, lemiančių tokią koreliaciją). Ir tada jo eksperimentų tikimybės turėtų būti didesnės nei iš tikrųjų atsitiktinio proceso tikimybė (kodėl gerai aprašyta toliau).
BET iš tikrųjų jie tiesiog turi tas pačias tikimybines priklausomybes. Ką tai reiškia? Tai reiškia, kad tai visai ne iš anksto nustatytas, duotas ryšys tarp parametro fiksavimo ir matavimo, o toks fiksavimo rezultatas atsiranda dėl to, kad procesai turi tą pačią (papildomą) tikimybinę funkciją (kuri, apskritai, tiesiogiai kyla iš kvantinės mechanikos sąvokų), esmė yra fiksuoto parametro realizavimas, kuris nebuvo apibrėžtas dėl to, kad jo „atskaitos rėme“ nėra erdvės ir laiko dėl maksimalios galimos jo egzistavimo dinamikos. (reliatyvistinis efektas, formalizuotas Lorenco transformacijomis, žr. Vakuumas, kvantai, materija).

Taip Brianas Greene'as aprašo metodologinę Bello eksperimento esmę savo knygoje „Kosmoso audinys“. Kiekvienas iš dviejų žaidėjų gavo daug dėžučių, kurių kiekviena turėjo tris duris. Jei pirmasis žaidėjas atidaro tas pačias duris kaip ir antrasis dėžėje su tuo pačiu numeriu, tada jos mirksi ta pačia šviesa: raudona arba mėlyna.
Pirmasis žaidėjas Scully daro prielaidą, kad tai užtikrina kiekvienoje poroje, priklausomai nuo durų, įtaisyta blykstės spalvų programa, antrasis žaidėjas Mulderis mano, kad blyksniai seka vienoda tikimybe, bet yra kažkaip sujungti (ne vietiniu tolimojo veikimo veiksmu). . Anot antrojo žaidėjo, patirtis nulemia viską: jei programa – tai identiškų spalvų tikimybė atsitiktinai atsidarius skirtingoms durims turėtų būti didesnė nei 50%, priešingai atsitiktinės tikimybės tiesai. Jis pateikė pavyzdį, kodėl:
Norėdami būti konkretesni, įsivaizduokime, kad programa atskiroje dėžutėje esančiai sferai gamina mėlyną (1 durys), mėlyną (2 durys) ir raudoną (3 durys) spalvas. Dabar, kadangi abu renkamės po vieną iš trijų durų, iš viso yra devyni galimi durų deriniai, kuriuos galime pasirinkti atidaryti tam tikrai dėžei. Pavyzdžiui, aš galiu pasirinkti viršutines savo dėžutės dureles, o jūs galite pasirinkti šonines savo dėžutės dureles; arba aš galiu pasirinkti lauko duris, o jūs galite pasirinkti viršutines duris; ir taip toliau."
"Taip, žinoma." – Skuli pašoko. „Jei viršutines duris vadinsime 1, šonines duris 2 ir priekines duris 3, tai devynios galimos durų kombinacijos yra tiesiog (1,1), (1,2), (1,3), (2,1). ), ( 2,2), (2,3), (3,1), (3,2) ir (3,3).
„Taip, tai tiesa“, - tęsia Mulderis. - "Dabar svarbus dalykas: iš šių devynių galimybių pažymime, kad penki durų deriniai - (1,1), (2,2), (3,3), (1,2) ir (2,1) - Rezultatas yra toks, kad mūsų dėžėse matome sferas mirgančias tomis pačiomis spalvomis.
Pirmieji trys durų deriniai yra tie, kuriuose renkamės tas pačias duris, ir, kaip žinome, dėl to visada matome tas pačias spalvas. Kiti du durelių deriniai (1,2) ir (2,1) gaunami tomis pačiomis spalvomis, nes programa nurodo, kad sferos mirksės viena spalva – mėlynai – jei atidarytos 1 arba 2 durys. Taigi, kadangi 5 yra daugiau nei pusė 9, tai reiškia, kad daugiau nei pusėje – daugiau nei 50 procentų – galimų durų derinių, kurias galime pasirinkti atidaryti, rutuliai mirksės ta pačia spalva.
„Bet palauk“, – protestuoja Skuli. - "Tai tik vienas specialios programos pavyzdys: mėlyna, mėlyna, raudona. Savo paaiškinime maniau, kad dėžutės su skirtingais numeriais gali turėti ir apskritai turės skirtingas programas."
„Tikrai nesvarbu, išvada galioja bet kuriai iš galimų programų.

Ir tai tikrai tiesa, jei kalbame apie programą. Tačiau tai visai ne taip, jei susiduriame su atsitiktinėmis daugelio patirčių priklausomybėmis, tačiau kiekviena iš šių nelaimingų atsitikimų kiekviename eksperimente yra vienoda.
Elektronų atveju, kai jie iš pradžių buvo surišti į porą, o tai užtikrina visiškai priklausomus sukinius (abipusius priešingus) ir skrenda vienas nuo kito, ši tarpusavio priklausomybė, žinoma, išlieka su pilnu bendru tikrosios kritulių tikimybės paveikslu. faktas, kad neįmanoma iš anksto pasakyti, kaip susidarė dviejų elektronų sukiniai poroje, kol vienas iš jų nėra nustatytas, bet jie „jau“ (jei taip galima pasakyti apie kažką, kas neturi savo sava laiko ir erdvės metrika) turi tam tikrą santykinę padėtį.

Toliau Brian Greene knygoje:
yra būdas ištirti, ar netyčia nesusidūrėme su SRT. Bendra materijos ir energijos savybė yra ta, kad perkeltos iš vienos vietos į kitą, jos gali perduoti informaciją. Fotonai, keliaujantys iš radijo stoties į imtuvą, neša informaciją. Interneto kabeliais į kompiuterį keliaujantys elektronai neša informaciją. Bet kokioje situacijoje, kai kažkas – net kažkas neatpažinto – numanoma, kad juda greičiau nei šviesos greitis, saugus testas yra paklausti, ar tai yra arba bent jau gali perduoti informaciją. Jei atsakymas yra neigiamas, standartinis samprotavimas vyksta, kad niekas neviršija šviesos greičio ir SRT lieka neginčijamas. Praktikoje fizikai dažnai naudoja šį testą norėdami nustatyti, ar koks nors subtilus procesas nepažeidžia STR dėsnių. Niekas neišgyveno šio išbandymo.

Kalbant apie R. Penrose'o požiūrį ir taip toliau. interpretatoriai, tada iš jo veikalo Penrouz.djvu pabandysiu išryškinti tą esminę nuostatą (pasaulėžiūrą), kuri tiesiogiai veda prie mistiškų pažiūrų apie nelokalumą (savo komentarais – juoda tsaeta):

Reikėjo rasti būdą, kuris leistų atskirti tiesą nuo prielaidų matematikoje – kokią nors formalią procedūrą, kurią naudojant būtų galima drąsiai pasakyti, ar duotas matematinis teiginys yra teisingas, ar ne. (prieštaravimą žr. Aristotelio metodas ir tiesa, tiesos kriterijai). Kol ši problema nebus tinkamai išspręsta, vargu ar galima rimtai tikėtis sėkmės sprendžiant kitas, daug sudėtingesnes problemas – tas, kurios yra susijusios su jėgų, kurios judina pasaulį, prigimtimi, nesvarbu, kokį ryšį tos pačios jėgos turėtų su matematine tiesa. Suvokimas, kad visatos supratimo raktas slypi nenuginčijamoje matematikoje, ko gero, pirmasis iš svarbiausių mokslo laimėjimo apskritai. Senovės egiptiečiai ir babiloniečiai spėliojo apie įvairias matematines tiesas, bet pirmasis matematinio supratimo pamatų akmuo...
... pirmą kartą žmonės turėjo galimybę suformuluoti patikimus ir akivaizdžiai nepaneigiamus teiginius – teiginius, kurių tiesa šiandien nekelia abejonių, nepaisant to, kad nuo to laiko mokslas pasistūmėjo į priekį. Pirmą kartą žmonės atrado tikrai nesenstančią matematikos prigimtį.
Kas tai yra – matematinis įrodymas? Matematikoje įrodymas yra nepriekaištingas samprotavimas, kuriame naudojami tik grynosios logikos metodai. (grynoji logika neegzistuoja. Logika yra aksiominis gamtoje randamų modelių ir santykių formalizavimas) leidžianti daryti nedviprasmišką išvadą apie konkretaus matematinio teiginio pagrįstumą, remiantis bet kokių kitų matematinių teiginių pagrįstumu, arba iš anksto nustatytų panašiu būdu, arba visai nereikalaujančių įrodymų (specialūs elementarūs teiginiai, kurių teisingumas, bendra nuomone, yra savaime suprantama, vadinamos aksiomomis) . Įrodytas matematinis teiginys paprastai vadinamas teorema. Čia aš jo nesuprantu: yra ir teoremų, kurios tiesiog išsakytos, bet neįrodytos.
... Objektyvios matematinės sąvokos turėtų būti laikomos nesenstančiais objektais; nereikia galvoti, kad jų egzistavimas prasideda tą akimirką, kai jie vienu ar kitu pavidalu atsiranda žmogaus vaizduotėje.
... Taigi matematinė egzistencija skiriasi ne tik nuo fizinės egzistencijos, bet ir nuo egzistencijos, kuria mūsų sąmoningas suvokimas sugeba apdovanoti objektą. Tačiau tai aiškiai susiję su paskutinėmis dviem egzistencijos formomis – t.y., fizine ir psichine egzistencija ryšys yra visiškai fizinė sąvoka, ką čia reiškia Penrose?– ir atitinkami ryšiai yra tokie pat esminiai, kiek paslaptingi.
Ryžiai. 1.3. Trys „pasauliai“ – Platono matematinis, fizinis ir psichinis – ir trys juos siejančios pagrindinės paslaptys...
... Taigi, pagal pavaizduotą pav. 1.3 diagramoje visą fizinį pasaulį valdo matematiniai dėsniai. Vėlesniuose knygos skyriuose pamatysime, kad yra tvirtų (jeigu neišsamių) įrodymų, patvirtinančių šį požiūrį. Jei tikėsime šiais įrodymais, turime pripažinti, kad viskas, kas egzistuoja fizinėje Visatoje, iki smulkmenų iš tiesų yra valdoma tiksliais matematiniais principais – galbūt lygtimis. Aš čia tik tyliai šlykštuju....
...Jei taip yra, tai mūsų fiziniai veiksmai yra visiškai ir visiškai pajungti tokiai visuotinei matematinei kontrolei, nors ši „kontrolė“ vis tiek leidžia tam tikrą elgsenos atsitiktinumą, valdomą griežtais tikimybiniais principais.
Daugelis žmonių dėl tokių prielaidų pradeda jaustis labai nepatogiai; Aš pats, prisipažinsiu, šios mintys kelia tam tikrą nerimą.
... Galbūt tam tikra prasme trys pasauliai visai nėra atskiri subjektai, o tik atspindi įvairius kažkokios fundamentalesnės TIESOS (išskirta mano), kuri apibūdina pasaulį kaip visumą, aspektus – tiesą, apie kurią šiuo metu neįsivaizduojame. sąvokas. - švarus Mistika....
.................
Netgi pasirodo, kad ekrane yra vietų, kurios nepasiekiamos šaltinio skleidžiamoms dalelėms, nepaisant to, kad dalelės gana sėkmingai galėjo patekti į šias sritis, kai buvo atidarytas tik vienas plyšys! Nors dėmės ekrane atsiranda po vieną lokalizuotose vietose ir nors kiekvienas dalelės susidūrimas su ekranu gali būti siejamas su konkrečiu šaltinio dalelės išmetimu, dalelės elgsena tarp šaltinio ir ekranas, įskaitant dviprasmiškumą, susijusį su dviejų plyšių buvimu barjere, yra panašus į bangos, kurioje banga, elgesį Kai dalelė susiduria su ekranu, ji jaučia abu plyšius iš karto. Be to (ir tai ypač svarbu mūsų tiesioginiams tikslams), atstumas tarp juostelių ekrane atitinka mūsų bangos dalelės bangos ilgį A, susietą su dalelių impulsu p pagal ankstesnę formulę XXXX.
Visa tai visiškai įmanoma, pasakys blaiviai mąstantis skeptikas, bet tai nepriverčia mūsų atlikti tokio absurdiškai atrodančio energijos ir impulso identifikavimo su kokiu nors operatoriumi! Taip, kaip tik tai ir noriu pasakyti: operatorius yra tik formalizmas reiškiniui apibūdinti tam tikrose jo rėmuose, o ne tapatumas su reiškiniu.
Žinoma, tai mūsų neverčia, bet ar turėtume nusigręžti nuo stebuklo, kai jis mums pasirodo?! Kas tai per stebuklas? Stebuklas yra tai, kad šį akivaizdų eksperimentinio fakto absurdiškumą (bangos tampa dalelėmis, o dalelės - bangomis) galima įnešti į sistemą pasitelkus gražų matematinį formalizmą, kuriame impulsas iš tikrųjų tapatinamas su „ diferenciacija pagal koordinatę“, o energija – „diferencija laiko atžvilgiu“.
... Visa tai puiku, bet kaip su būsenos vektoriumi? Kas trukdo mums pripažinti, kad tai atspindi tikrovę? Kodėl fizikai dažnai labai nenoriai priima šią filosofinę poziciją? Ne tik fizikai, bet ir tie, kurie turi viską tvarkoje su holistine pasaulėžiūra ir nėra linkę užsiimti nepakankamai apibrėžtais samprotavimais.
.... Jei norite, galite įsivaizduoti, kad fotonų bangos funkcija iš šaltinio palieka aiškiai apibrėžto mažų dydžių bangų paketo pavidalu, tada, susitikus su pluošto dalikliu, yra padalinta į dvi dalis, iš kurių viena atsispindi nuo skirstytuvo, o kitas perduodamas per jį, pavyzdžiui, statmena kryptimi. Abiejuose privertėme bangos funkciją padalyti į dvi dalis pirmajame pluošto skirstytuve... 1 aksioma: kvantas nedalomas. Žmogų, kuris kalba apie kvanto dalis, esančias už bangos ilgio ribų, aš žiūriu ne mažiau skeptiškai nei žmogų, kuris su kiekvienu kvanto būsenos pasikeitimu kuria naują visatą. 2 aksioma: fotonas nekeičia savo trajektorijos, o jei jis pasikeitė, tai yra elektrono pakartotinė fotono emisija. Nes kvantas nėra elastinga dalelė ir nėra nieko, nuo ko jis atšoktų. Kažkodėl visuose tokių eksperimentų aprašymuose vengiama minėti šiuos du dalykus, nors jie turi pagrindinę reikšmę nei aprašomi efektai. Nesuprantu, kodėl Penrose'as tai sako, jis negali nežinoti apie kvanto nedalomumą, be to, jis tai paminėjo dvigubo plyšio aprašyme. Tokiais stebuklingais atvejais vis tiek reikia stengtis išlikti pagrindinių aksiomų rėmuose, o jei jos kažkokiu būdu prieštarauja patirtimi, tai yra priežastis atidžiau pagalvoti apie metodiką ir interpretaciją.
Priimkime, bent jau kaip matematinį kvantinio pasaulio modelį, šį keistą aprašymą, pagal kurį kvantinė būsena kurį laiką vystosi banginės funkcijos pavidalu, dažniausiai „ištepta“ visoje erdvėje (bet su galimybe fokusavimas labiau ribotoje srityje), o tada, kai atliekamas matavimas, ši būsena virsta kažkuo lokalizuotu ir aiškiai apibrėžtu.
Tie. jie rimtai kalba apie galimybę, kad kažkas išsiskirstys per kelis šviesmečius su galimybe akimirksniu pasikeisti. Tai gali būti pateikta grynai abstrakčiai – kaip formalizuoto aprašymo išsaugojimas iš abiejų pusių, bet ne kaip tikros būtybės, atstovaujamos kvanto prigimties. Čia yra aiškus idėjos apie matematinių formalizmų egzistavimo tikrovę tęstinumas.

Štai kodėl aš tiek Penrose'us, tiek kitus panašius promistiškai nusiteikusius fizikus vertinu labai skeptiškai, nepaisant labai garsaus jų autoriteto...

S. Weinberg knygoje Dreams of a Final Theory:
Kvantinės mechanikos filosofija yra tokia nereikšminga jos realiam naudojimui, kad pradeda įtarti, kad visi gilūs klausimai apie matavimo reikšmę iš tikrųjų yra tušti, kuriuos sukelia mūsų kalbos netobulumas, sukurtas pasaulyje, kurį praktiškai valdo dėsniai. klasikinės fizikos.

Straipsnyje Kas yra lokalumas ir kodėl jo nėra kvantiniame pasaulyje? , kur problemą, remdamasis naujausiais įvykiais, apibendrina RCC darbuotojas ir Kalgario universiteto profesorius Aleksandras Lvovskis:
Kvantinis nelokalumas egzistuoja tik Kopenhagos kvantinės mechanikos interpretacijos rėmuose. Pagal ją išmatuojant kvantinę būseną, ji griūva. Jei remsime daugelio pasaulių interpretaciją, kuri teigia, kad būsenos matavimas tik išplečia superpoziciją stebėtojui, tada nėra nelokalumo. Tai tik iliuzija stebėtojo, kuris „nežino“, kad jis pateko į įsipainiojusią būseną su dalele priešingame kvantinės linijos gale.

Kai kurios išvados iš straipsnio ir esamos diskusijos.
Šiuo metu yra daug skirtingų sudėtingumo lygių interpretacijų, stengiantis ne tik apibūdinti susipainiojimo ir kitų „nelokalių padarinių“ reiškinį, bet ir apibūdinti prielaidas apie šių reiškinių prigimtį (mechanizmus) – t.y. hipotezes. Be to, vyrauja nuomonė, kad šioje dalykinėje srityje nieko neįmanoma įsivaizduoti, o pasikliauti galima tik tam tikrais įforminimais.
Tačiau tie patys formalizavimai, apytiksliai vienodai įtikinamai, gali parodyti viską, ko nori interpretatorius, iki pat aprašyti naujos visatos atsiradimą kiekvieną kartą kvantinio neapibrėžtumo momentu. O kadangi tokių momentų atsiranda stebint, sąmonės atnešimas yra tarsi tiesioginis kvantinių reiškinių dalyvis.
Išsamų pagrindimą – kodėl toks požiūris atrodo visiškai neteisingas – skaitykite straipsnyje Euristika.
Taigi, kiekvieną kartą, kai kitas šaunus matematikas pradeda įrodinėti kažką panašaus į dviejų visiškai skirtingų reiškinių gamtos vienovę, remiantis jų matematinio aprašymo panašumu (na, pavyzdžiui, tai rimtai daroma su Kulono dėsniu ir Niutono gravitacijos dėsniu) arba „Paaiškink“ kvantinį susipynimą su specialia „dimensija“, neatspindėdamas tikrojo jo įsikūnijimo (arba dienovidinių egzistavimo žemiečių formalizme), aš jį pasirengusiu pasiliksiu :)



Ar jums patiko straipsnis? Pasidalink