Контакты

Cos f плавный заряд конденсаторов. Плавный заряд емкости: что выбрать? Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

При конструировании блоков питания усилителей часто возникают проблемы, никак не связанные с самим усилителем, или являющиеся следствием применённой элементной базы. Так в блоках питания транзисторных усилителей большой мощности часто возникает проблема реализовать плавное включение блока питания, то есть обеспечить медленный заряд электролитических конденсаторов в сглаживающем фильтре, которые могут иметь весьма значительную ёмкость и, без принятия соответствующих мер, в моменты включения просто выведут из строя диоды выпрямителя.

В блоках питания ламповых усилителей любой мощности необходимо обеспечить задержку подачи высокого анодного напряжения до прогрева ламп, чтобы избежать преждевременного обеднения катода и как следствие существенного сокращения ресурса лампы. Конечно, при использовании кенотронного выпрямителя эта проблема решается сама собой. Но в случае использования обычного мостового выпрямителя с LC-фильтром, без дополнительного устройства не обойтись.

Обе вышеизложенные проблемы позволяет решить простое устройство, которое может быть легко встроено как в транзисторный, так и в ламповый усилитель.

Схема устройства.

Принципиальная схема устройства плавного включения представлена на рисунке:

Увеличение по клику

Переменное напряжение на вторичной обмотке трансформатора ТР1 выпрямляется диодным мостом Br1 и стабилизируется интегральным стабилизатором VR1. Резистор R1 обеспечивает плавный заряд конденсатора C3. Когда напряжение на нём достигнет пороговой величины, откроется транзистор Т1, в результате чего сработает реле Rel1. Резистор R2 обеспечивает разряд конденсатора C3 при выключении устройства.

Варианты включения.

Контактная группа реле Rel1 подключается в зависимости от типа усилителя и организации блока питания.

Для примера, чтобы обеспечить плавный заряд конденсаторов в блоке питания транзисторного усилителя мощности , представленное устройство можно использовать для шунтирования балластного резистора после заряда конденсаторов, чтобы исключить потери мощности на нём. Возможный вариант включения показан на схеме:

Номиналы предохранителя и балластного резистора не указаны, так как выбираются, исходя из мощности усилителя и ёмкости конденсаторов сглаживающего фильтра.

В ламповом усилителе представленное устройство поможет организовать задержку подачи высокого анодного напряжения до прогрева ламп, что позволяет существенно продлить их ресурс работы. Возможный вариант включения представлен на рисунке:

Схема задержки здесь включается одновременно с накальным трансформатором. После прогрева ламп включится реле Rel1, в результате чего сетевое напряжение будет подано на анодный трансформатор.

Если в вашем усилителе используется один трансформатор и для питания цепей накала ламп, и для анодного напряжения, тогда контактную группу реле следует перенести в цепь вторичной обмотки анодного напряжения .

Элементы схемы задержки включения (плавного пуска):

  • Предохранитель: 220В 100мА,
  • Трансформатор: любой маломощный с выходным напряжением 12-14В,
  • Диодный мост: любой малогабаритный с параметрами 35В/1А и выше,
  • Конденсаторы: С1 — 1000мкФ 35В, С2 — 100нФ 63В, С3 — 100мкФ 25В,
  • Резисторы: R1 — 220кОм, R2- 120 кОм,
  • Транзистор: IRF510,
  • Интегральный стабилизатор: 7809, LM7809, L7809, MC7809 (7812),
  • Реле: с рабочим напряжением обмотки 9В (12В для 7812) и контактной группой соответствующей мощности.

Из-за малого тока потребления микросхему стабилизатора и полевой транзистор можно монтировать без радиаторов.

Однако у кого-то может возникнуть идея отказаться от лишнего, пусть и малогабаритного, трансформатора и запитать схему задержки от напряжения накала. Учитывая, что стандартное значение напряжения накала ~6.3В, придётся заменить стабилизатор L7809 на L7805 и применить реле с рабочим напряжением обмотки 5В. Такие реле обычно потребляют значительный ток, в этом случае микросхему и транзистор придётся снабдить небольшими радиаторами.

При использовании реле с обмоткой на 12В (как-то чаще встречаются) микросхему интегрального стабилизатора следует заменить на 7812 (L7812, LM7812, MC7812).

С указанными на схеме номиналами резистора R1 и конденсатора С3 время задержки включения составляет порядка 20 секунд . Для увеличения временного интервала необходимо увеличить ёмкость конденсатора С3.

Статья подготовлена по материалам журнала «АудиоИкспресс»

Вольный перевод Главного редактора «РадиоГазеты».

Если соединить резистор и конденсатор, то получится пожалуй одна из самых полезных и универсальных цепей.

О многочисленных способах применения которой я сегодня и решил рассказать. Но вначале про каждый элемент в отдельности:

Резистор — его задача ограничивать ток. Это статичный элемент, чье сопротивление не меняется, про тепловые погрешности сейчас не говорим — они не слишком велики. Ток через резистор определяется законом ома — I=U/R , где U напряжение на выводах резистора, R — его сопротивление.

Конденсатор штука поинтересней. У него есть интересное свойство — когда он разряжен то ведет себя почти как короткое замыкание — ток через него течет без ограничений, устремляясь в бесконечность. А напряжение на нем стремится к нулю. Когда же он заряжен, то становится как обрыв и ток через него течь перестает, а напряжение на нем становится равным заряжающему источнику. Получается интересная зависимость — есть ток, нет напряжения, есть напряжение — нет тока.

Чтобы визуализировать себе этот процесс, представь ган… эмм.. воздушный шарик который наполняется водой. Поток воды — это ток. Давление воды на упругие стенки — эквивалент напряжения. Теперь смотри, когда шарик пуст — вода втекает свободно, большой ток, а давления еще почти нет — напряжение мало. Потом, когда шарик наполнится и начнет сопротивляться давлению, за счет упругости стенок, то скорость потока замедлится, а потом и вовсе остановится — силы сравнялись, конденсатор зарядился. Есть напряжение натянутых стенок, но нет тока!

Теперь, если снять или уменьшить внешнее давление, убрать источник питания, то вода под действием упругости хлынет обратно. Также и ток из конденсатора потечет обратно если цепь будет замкнута, а напряжение источника ниже чем напряжение в конденсаторе.

Емкость конденсатора. Что это?
Теоретически, в любой идеальный конденсатор можно закачать заряд бесконечного размера. Просто наш шарик сильней растянется и стенки создадут большее давление, бесконечно большое давление.
А что же тогда насчет Фарад, что пишут на боку конденсатора в качестве показателя емкости? А это всего лишь зависимость напряжения от заряда (q = CU). У конденсатора малой емкости рост напряжения от заряда будет выше.

Представь два стакана с бесконечно высокими стенками. Один узкий, как пробирка, другой широкий, как тазик. Уровень воды в них — это напряжение. Площадь дна — емкость. И в тот и в другой можно набузолить один и тот же литр воды — равный заряд. Но в пробирке уровень подскочит на несколько метров, А в тазике будет плескаться у самого дна. Также и в конденсаторах с малой и большой емкостью.
Залить то можно сколько угодно, но напряжение будет разным.

Плюс в реале у конденсаторов есть пробивное напряжение, после которого он перестает быть конденсатором, а превращается в годный проводник:)

А как быстро заряжается конденсатор?
В идеальных условиях, когда у нас бесконечно мощный источник напряжения с нулевым внутренним сопротивлением, идеальные сверхпроводящие провода и абсолютно безупречный конденсатор — этот процесс будет происходить мгновенно, с временем равным 0, равно как и разряд.

Но в реальности всегда существуют сопротивления, явные — вроде банального резистора или неявные, такие как сопротивление проводов или внутреннее сопротивление источника напряжения.
В этом случае скорость заряда конденсатора будет зависить от сопротивлений в цепи и емкости кондера, а сам заряд будет идти по экспоненциальному закону .


А у этого закона есть пара характерных величин:

  • Т — постоянная времени , это время при котором величина достигнет 63% от своего максимума. 63% тут взялись не случайно, тут прямая завязка на такую формулу VALUE T =max—1/e*max.
  • 3T — а при троекратной постоянной значение достигнет 95% своего максимума.

Постоянная времени для RC цепи Т=R*C .

Чем меньше сопротивление и меньше емкость, тем быстрей конденсатор заряжается. Если сопротивление равно нулю, то и время заряда равно нулю.

Рассчитаем за сколько зарядится на 95% конденсатор емкостью 1uF через резистор в 1кОм:
T= C*R = 10 -6 * 10 3 = 0.001c
3T = 0.003c через такое время напряжение на конденсаторе достигнет 95% от напряжения источника.

Разряд пойдет по тому же закону, только вверх ногами. Т.е. через Твремени в на конденсаторе остаенется всего лишь 100% — 63% = 37% от первоначального напряжения, а через 3T и того меньше — жалкие 5%.

Ну с подачей и снятием напряжения все ясно. А если напряжение подали, а потом еще ступенчато подняли, а разряжали также ступеньками? Ситуация тут практически не изменится — поднялось напряжение, конденсатор дозарядился до него по тому же закону, с той же постоянной времени — через время 3Т его напряжение будет на 95% от нового максимума.
Чуть понизилось — подразрядился и через время 3Т напряжение на нем будет на 5% выше нового минимума.
Да что я тебе говорю, лучше показать. Сварганил тут в мультисиме хитровыдрюченный генератор ступечнатого сигнала и подал на интегрирующую RC цепочку:


Видишь как колбасится:) Обрати внимание, что и заряд и разряд, вне зависимости от высоты ступеньки, всегда одной длительности!!!

А до какой величины конденсатор можно зарядить?
В теории до бесконечности, этакий шарик с бесконечно тянущимися стенками. В реале же шарик рано или поздно лопнет, а конденсатор пробьет и закоротит. Вот поэтому у всех конденсаторов есть важный параметр — предельное напряжение . На электролитах его часто пишут сбоку, а на керамических его надо смотреть в справочниках. Но там оно обычно от 50 вольт. В общем, выбирая кондер надо следить, чтобы его предельное напряжение было не ниже того которое в цепи. Добавлю что при расчете конденсатора на переменное напряжение следует выбирать предельное напряжение в 1.4 раза выше. Т.к. на переменном напряжении указывают действующее значение, а мгновенное значение в своем максимуме превышает его в 1.4 раза.

Что следует из вышеперечисленного? А то что если на конденсатор подать постоянное напряжение, то он просто зарядится и все. На этом веселье закончится.

А если подать переменное? То очевидно, что он будет то заряжаться, то разряжаться, а в цепи будет туда и обратно гулять ток. Движуха! Ток есть!

Выходит, несмотря на физический обрыв цепи между обкладками, через конденсатор легко протекает переменный ток, а вот постоянному слабо.

Что нам это дает? А то что конденсатор может служить своего рода сепаратором, для разделения переменного тока и постоянного на соответствующие составляющие.

Любой изменяющийся во времени сигнал можно представить как сумму двух составляющих — переменной и постоянной.


Например, у классической синусоиды есть только переменная часть, а постоянная равна нулю. У постоянного же тока наоборот. А если у нас сдвинутая синусоида? Или постоянная с помехами?

Переменная и постоянная составляющие сигнала легко разделяются!
Чуть выше я тебе показал как конденсатор дозаряжается и подразряжается при изменениях напряжения. Так что переменная составляющая сквозь кондер пройдет на ура, т.к. только она заставляет конденсатор активно менять свой заряд. Постоянная же как была так и останется и застрянет на конденсаторе.

Но чтобы конденсатор эффективно разделял переменную составляющую от постоянной частота переменной составляющей должна быть не ниже чем 1/T

Возможны два вида включения RC цепочки:
Интегрирующая и дифференцирующая . Они же фильтр низких частот и фильтр высоких частот.

Фильтр низких частот без изменений пропускает постоянную составляющую (т.к. ее частота равна нулю, ниже некуда) и подавляет все что выше чем 1/T. Постоянная составляющая проходит напрямую, а переменная составляющая через конденсатор гасится на землю.
Такой фильтр еще называют интегрирующей цепочкой потому, что сигнал на выходе как бы интегрируется. Помнишь что такое интеграл? Площадь под кривой! Вот тут она и получается на выходе.

А дифференцирующей цепью ее называют потому, что на выходе у нас получается дифференциал входной функции, который есть не что иное как скорость изменения этой функции.


  • На участке 1 происходит заряд конденсатора, а значит через него идет ток и на резисторе будет падение напряжения.
  • На участке 2 происходит резкое увеличение скорости заряда, а значит и ток резко возрастет, а за ним и падение напряжения на резисторе.
  • На участке 3 конденсатор просто удерживает уже имеющийся потенциал. Ток через него не идет, а значит на резисторе напряжение тоже равно нулю.
  • Ну и на 4м участке конденсатор начал разряжаться, т.к. входной сигнал стал ниже чем его напряжение. Ток пошел в обратную сторону и на резисторе уже отрицательное падение напряжения.

А если подать на вход прямоугольнй импульс, с очень крутыми фронтами и сделать емкость конденсатора помельче, то увидим вот такие иголки:

прямоугольник. Ну, а чо? Правильно — производная от линейной функции есть константа, наклон этой функции определяет знак константы.

Короче, если у тебя сейчас идет курс матана, то можешь забить на богомерзкий Mathcad, отвратный Maple, выбросить из головы матричную ересь Матлаба и, достав из загашников горсть аналоговой рассыпухи, спаять себе истинно ТРУЪ аналоговый компьютер:) Препод будет в шоке:)

Правда на одних только резисторах кондерах интеграторы и диффернциаторы обычно не делают, тут юзают операционные усилители. Можешь пока погуглить на предмет этих штуковин, любопытная вещь:)

А вот тут я подал обычный приямоугольный сигнал на два фильтра высоких и низких частот. А выходы с них на осциллограф:

Вот, чуть покрупней один участок:

При старте кондер разряжен, ток через него вваливат на полную, а напряжение на нем мизерное — на входе RESET сигнал сброса. Но вскоре конденсатор зарядится и через время Т его напряжение будет уже на уровне логической единицы и на RESET перестанет подаваться сигнал сброса — МК стартанет.
А для AT89C51 надо с точностью наоборот RESET организовать — вначале подать единицу, а потом ноль. Тут ситуация обратная — пока кондер не заряжен, то ток через него течет большой, Uc — падение напряжения на нем мизерное Uc=0. А значит на RESET подается напряжение немногим меньше напряжения питания Uпит-Uc=Uпит.
Но когда кондер зарядится и напряжение на нем достигнет напряжения питания (Uпит=Uс), то на выводе RESET уже будет Uпит-Uc=0

Аналоговые измерения
Но фиг сними с цепочками сброса, куда прикольней использовать возможность RC цепи для замера аналоговых величин микроконтроллерами в которых нет АЦП.
Тут используется тот факт, что напряжение на конденсаторе растет строго по одному и тому же закону — экспоненте. В зависимости от кондера, резистора и питающего напряжения. А значит его можно использовать как опорное напряжение с заранее известными параметрами.

Работает просто, мы подаем напряжение с конденсатора на аналоговый компаратор, а на второй вход компаратора заводим измеряемое напряжение. И когда хотим замерить напряжение, то просто вначале дергаем вывод вниз, чтобы разрядить конденсатор. Потом возвращем его в режим Hi-Z, cбрасываем и запускаем таймер. А дальше кондер начинает заряжаться через резистор и как только компаратор доложит, что напряжение с RC догнало измеряемое, то останавливаем таймер.


Зная по какому закону от времени идет возрастание опорного напряжения RC цепи, а также зная сколько натикал таймер, мы можем довольно точно узнать чему было равно измеряемое напряжение на момент сработки компаратора. Причем, тут не обязательно считать экспоненты. На начальном этапе зарядки кондера можно предположить, что зависимость там линейная. Или, если хочется большей точности, аппроксимировать экспоненту кусочно линейными функциями, а по русски — отрисовать ее примерную форму несколькими прямыми или сварганить таблицу зависимости величины от времени, короче, способов вагон просто.

Если надо заиметь аналоговую крутилку, а АЦП нету, то можно даже компаратор не юзать. Дрыгать ножкой на которой висит конденсатор и давать ему заряжаться через перменный резистор.

По изменению Т, которая, напомню T=R*C и зная что у нас С = const, можно вычислить значение R. Причем, опять же необязательно подключать тут математический аппарат, в большинстве случаев достаточно сделать замер в каких-нибудь условных попугаях, вроде тиков таймера. А можно пойти другим путем, не менять резистор, а менять емкость, например, подсоединяя к ней емкость своего тела… что получится? Правильно — сенсорные кнопки!

Если что то непонятно, то не парься скоро напишу статью про то как прикрутить к микроконтроллеру аналоговую фиговину не используя АЦП. Там подробно все разжую.

Классный фейерверк у вас заложен. Стоит паре-тройке светодиодов пробиться, напряжение на LM317 скакнет до запредельного и будет классный бабах.

1000 микрофарад на 450v = 80 Джоулей. В случае проблем, конденсатор жухнет так, что мало не покажется. А проблемы будут, так как вы сунули конденсатор совсем без запаса в среду, где и 1kV можно в импульсе на вход поймать.

Совет - сделайте нормальный импульсный драйвер. А не этот кружок "умелые руки" без гальванической развязки и фильтров.

Даже если условно принять эту схему за верную, нужно наставить вокруг LM317 керамических конденсаторов, чтобы не звенела.

И да, токоограничение транзистором делается иначе - в вашей схеме он просто рванет потому как изначально к переходу Э-К будет приложена сеть.

А к переходу ЭБ ваш делитель приложит 236 вольт, что также приведет ко взрыву транзистора.

После нескольких уточнений наконец выяснилось, чего же вы хотите добиться: общий источник питания для нескольких цепей последовательно включённых светодиодов. Главной проблемой вы сочли узел плавного заряда фильтрового конденсатора. На мой взгляд, в такой схеме есть несколько куда более критичных мест. Но сначала по теме вопроса.

1000 мкф - это значение подходяще для тока нагрузки 0,5...3 ампера, а не десятки миллиампер (там достаточно 22...50 мкф). Транзистор можно ставить, если надо сделать плавное, на 4...20 секунд, нарастание яркости - но ведь у вас несколько гирлянд! Неужели они должны во всей квартире стартовать одновременно? Да и насчёт выключателей - вы хотите вместо штатных, коммутирующих цепь ~220 вольт, коммутировать цепь =310 вольт, ставя выключатель между конденсатором и гирляндой? Такое решение выглядит хоть как-то оправданным для "умного дома" (да и то не всё в нём понятно), но в обычной квартире так делать смысла нет. В ней правильнее установить для каждой гирлянды свой отдельный БП - и тогда куда выгоднее применять обычные супердешёвые (и куда более надёжные!) ленты с параллельными светодиодами на 12 вольт, а не с самодельными последовательными, в которых выгорание одного диода полностью лишает вас света.
Другое назначение узла плавного заряда - защита выпрямительных диодов от многократной перегрузки в момент включения, когда конденсатор полностью разряжен. Но эта задача полностью решается куда более простым методом - вместо T1 и R1, R3 надо вставить терморезистор сопротивлением в несколько десятков ом, снижающимся при прогреве до 0,5...3 ом, так сделано в сотнях миллионов компьютерных БП, надёжно работающих годами при примерно таком же токе нагрузки, как и у вас. Добыть такой термистор можно из любого дохлого компьютерного БП.

И наконец о том, чего в вашем вопросе нет, а оно бросается в глаза - о стабилизаторе тока на LM317, поглощающем излишек сетевого напряжения. Дело в том, что такой стаб работоспособен только в диапазоне от 3 до 40 вольт. Допуск на сетевое напряжение в городской исправной сети 10%, т.е. от 198 до 242 вольт. Значит, если вы рассчитали стаб на нижний предел (а так обычно и делается), то на верхнем пределе напряжение на стабе выйдет за допустимые 40 вольт. Если же вы настроите его на верх диапазона (т.е. на 242), то на нижнем пределе напряжение на стабе понизится ниже 3 вольт, и он перестанет стабилизировать ток. И я уж умолчу, что будет с этой схемой в сельской местности, где колебания сетевого напряжения куда шире. Так что такая схема будет нормально работать только при стабильном напряжении сети - но при стабильной сети стабилизатор не нужен, его прекрасно заменит простой резистор.

Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора с сопротивлением R, к источнику питания с постоянным напряжением U (рис. 16-4).

Так как в момент включения конденсатор еще не заряжен, то напряжение на нем Поэтому в цепи в начальный момент времени падение напряжения на сопротивлении R равно U и возникает ток, сила которого

Рис. 16-4. Зарядка конденсатора.

Прохождение тока i сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение и падение напряжения на сопротивлении R уменьшается:

как и следует из второго закона Кирхгофа. Следовательно, сила тока

уменьшается, уменьшается и скорость накопления заряда Q, так как ток в цепи

С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем растут все медленнее (рис. 16-5), а сила тока в цепи постепенно уменьшается пропорционально разности - напряжений

Рис. 16-5. График изменения тока и напряжения при зарядке конденсатора.

Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится равным нулю - процесс зарядки конденсатора заканчивается.

Процесс зарядки конденсатора тем продолжительней, чем больше сопротивление цепи R, ограничивающее силу тока, и чем больше емкость конденсатора С, так как при большой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуют постоянной времени цепи

чем больше , тем медленнее процесс.

Постоянная времени цепи имеет размерность времени, так как

Через интервал времени с момента включения цепи, равный , напряжение на конденсаторе достигает примерно 63% напряжения источника питания, а через интервал процесс зарядки конденсатора можно считать закончившимся.

Напряжение на конденсаторе при зарядке

т. е. оно равно разности постоянного напряжения источника питания и свободного напряжения убывающего с течением времени по закону показательной функции от значения U до нуля (рис. 16-5).

Зарядный ток конденсатора

Ток от начального значения постепенно уменьшается по закону показательной функции (рис. 16-5).

б) Разряд конденсатора

Рассмотрим теперь процесс разряда конденсатора С, который был заряжен от источника питания до напряжения U через резистор с сопротивлением R (рис. 16-6, Где переключатель переводится из положения 1 в положение 2).

Рис. 16-6. Разряд конденсатора на резистор.

Рис. 16-7. График изменения тока и напряжения при разрядке конденсатора.

В начальный момент, в цепи возникнет ток и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения будет уменьшаться и ток в цепи (рис. 16-7). Через интервал времени напряжение на конденсаторе и ток цепи уменьшатся при мерно до 1% начальных значений и процесс разряда конденсатора можно считать закончившимся.

Напряжение на конденсаторе при разряде

т. е. уменьшается по закону показательной функции (рис. 16-7).

Разрядный ток конденсатора

т. е. он, так же как и напряжение, уменьшается по тому же закону (рис. 6-7).

Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.

Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают некоторой проводимостью.

Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. Постоянная времени при саморазряде конденсатора не зависит от формы обкладок и расстояния между ними.

Процессы зарядки и разряда конденсатора называются переходными процессами.

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

    Сопротивление при 25˚С

    Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном - номинальное сопротивление термистора при температуре 25°С

Iмакс - максимальный ток через термистор (максимальный установившийся ток)

Смакс - максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Наименование

Rном,

Iмакс,

Смакс,

д иаметр 8мм

диаметр 10мм

диаметр 13мм

диаметр 15мм

диаметр 20мм

Таблица параметров NTC термисторов фирмы Joyin

Соединяя несколько одинаковых NTC термисторов последовательно, мы уменьшаем требования к максимальной импульсной энергии каждого из них.

Приведу пример. Например, нам необходимо подобрать термистор для включения блока питания компьютера. Максимальная мощность потребления компьютера – 700 ватт. Мы хотим ограничить стартовый ток величиной 2-2.5А. В блоке питания установлен конденсатор фильтра 470мкФ.

Считаем действующее значение тока:

I = 700Вт/220В = 3.18А

Как писал выше, для надежной работы термистора, выберем максимальный установившийся ток из документации на 20% больше этой величины.

Iмакс = 3.8А

Считаем нужное сопротивление термистора для стартового тока 2.5А

R = (220В*√2)/2.5А = 124 Ом

Из таблицы находим нужные термисторы. 6 штук последовательно включенных термисторов JNR15S200L подходят нам по Iмакс , общему сопротивлению. Максимальная емкость, которую они могут зарядить будет равна 680мкФ*6*0.65=2652мкФ, что даже больше, чем нам нужно. Естественно, при понижении Vpeak , понижаются и требования к максимальной импульсной мощности термистора. Зависимость у нас от квадрата напряжения.

И последний вопрос по поводу выбора термисторов. Что, если мы подобрали необходимые по максимальной импульсной мощности термисторы, но они нам не подходят по Iмакс (постоянная нагрузка для них слишком велика), либо в самом устройстве нам не нужен источник постоянного нагрева? Для этого мы применим простое решение – добавим в схему еще один выключатель параллельно термистору, который включим после зарядки конденсатора. Что я и сделал в своем ограничителе. В моем случае параметры такие – максимальная мощность потребления компьютера 400вт, ограничение стартового тока – 3.5А, конденсатор фильтра 470мкФ. Я взял 6 штук термисторов 15d11 (15 ом). Схема приведена ниже.


Рис. 3 Схема ограничителя

Пояснения по схеме. SA1 отключает фазовый провод. Светодиод VD2 служит для индикации работы ограничителя. Конденсатор C1 сглаживает пульсации и светодиод не мерцает с частотой сети. Если он вам не нужен, то уберите из схемы C1, VD6, VD1 и просто соедините параллельно светодиод и диод по аналогии элементов VD4, VD5. Для индикации процесса зарядки конденсатора, параллельно термисторам включен светодиод VD4. В моем случае при зарядке конденсатора блока питания компьютера, весь процесс занимает менее секунды. Итак, собираем.


Рис.4 Набор для сборки

Индикацию питания я собрал непосредственно в крышке от выключателя, выкинув из нее китайскую лампу накаливания, которая бы прослужила недолго.


Рис. 5 Индикация питания


Рис.6 Блок термисторов


Рис. 7 Собранный ограничитель

На этом можно было бы закончить, если бы через неделю работы не вышли из строя все термисторы. Выглядело это так.


Рис. 8 Выход из строя NTC термисторов

Несмотря на то, что запас по допустимой величине емкости был очень большой – 330мкФ*6*0.65=1287мкФ.

Термисторы брал в одной известной фирме, причем разных номиналов – все брак. Производитель неизвестен. Либо китайцы заливают в большие корпуса термисторы меньших диаметров, либо качество материалов очень плохое. В итоге купил даже меньшего диаметра - SCK 152 8мм. То же Китай, но уже фирменные. По нашей таблице допустимая емкость 100мкФ*6*0.65=390мкФ, что даже немного меньше, чем нужно. Тем не менее, все работает отлично.



Понравилась статья? Поделитесь ей